
Logistic regression with pairwise constraints

Jacek Tabor, Marek Śmieja, Oleksandr Myronov

Jagiellonian University

February 14, 2017



Motivation

Not all datasets are perfect. Typical additional information in an imperfect dataset

I soft assignment - class probabilities

I pairwise constraints

I unlabeled data

Examples

I Human labeling can introduce both the soft assignment (inter-annotator
disagreement)

I Frame sequence from the person tracker in human classification task. People in
subsequent frames are probably the same person, 2 people in the same frame are
probably different.



Demonstration

Figure 1: Logistic regression: vanilla vs links



Classification cost function - logistic regression
We have n classes which are categorical, and we want to estimate the probability that
the point x belongs to a class. To do so, we search for vectors v1, . . . , vn−1 ∈ RN (vn
can be reduced) so that

pk(x) = p(k |x) =
exp(vk · x)

1 +
∑n−1

l=1 exp(vl · x)
, for k = 1, . . . , n − 1,

pn(x) = p(n|x) =
1

1 +
∑n−1

l=1 exp(vl · x)
.

For n classes X1, . . . ,Xn ⊂ X the goal is to fix vectors vk so that pk(x) = 1 for all
x ∈ Xk , k = 1, . . . , n. We maximize the log-likelihood, equivalent of maximizing

n∏
k=1

∏
x∈Xk

pk(x).

I pro: concave
I con: strong misclassification of a single point is not acceptable
I con: pairwise constraints may disrupt concavity



Classification cost function - labeled data
Expected probability of correct answers is given by:

n∑
k=1

∑
x∈Xk

pk(x). (1)

Soft priors memberships, i.e. instead of giving hard class label yi ∈ {1, . . . , k} for a
training point xi , for i = 1, . . . , t, we assume that the point is assigned to classes

according the probabilities pi = (p
(1)
i , . . . , p

(n)
i ), where

∑n
k=1 p

(k)
i = 1 and p

(k)
i

quantifies our believes (probability) that xi belongs to k-th class. Objective function is
the regularized expected misclassification probability,

t∑
i=1

‖pi − p(xi )‖2 =
t∑

i=1

∑
k

(p
(k)
i − pk(xi ))2

Minimization of the above function without the square is equivalent to maximization of
(1). The square regularization was added to put even lower penalty for
misclassification examples.



Classification cost function - pairwise constraints
Pairwise constrains define pairs (xi , xj) ∈ X × X that originate from the same class
(must-links) or different classes (cannot-links).
Let pij be a prior probability that a pair (xi , xj) belongs to the same class. In
consequence, xi , xj belong to different class with probability 1− pij , which represents
the probability of cannot-link. The probability that the points xi , xj are in the same
class is given by

must(xi , xj) =
∑
k

pk(xi )pk(xj).

cannot(xi , xj) = 1−must(xi , xj).

Learning model tries to find such vectors vi , for i = 1, . . . , n, that the pairwise
constraints are satisfied. To maximize the expected probability of correct answers, we
arrive at the regularized expected probability loss function, given by:∑

(i ,j)∈C

(pij −
n∑

k=1

pk(xi )pk(xj))2,

that have to be minimized.



Classification cost function - unlabeled

We are often given a lot of data points with no class information. In a typical
semi-supervised setting, we take into account a cluster assumption, which states that
the class labels do not change much in dense regions. We realize this assumption by
assigning the most probable label to every unlabeled data point.
Given a set of unlabeled data xi , for i = t + 1, . . . ,T , we would like to maximize:

T∑
i=t+1

n∑
k=1

pk(xi )
2.

Equivalently, we focus on minimizing

T∑
i=t+1

−‖p(xi )‖2 =
T∑

i=t+1

n∑
k=1

−pk(xi )
2.



Classification cost function

The final cost function:

L =
∑t

i=1

∑n
k=1(p

(k)
i − pk(xi ))2

+β
∑

(i ,j)∈C (pij −
∑n

k=1 pk(xi )pk(xj))2

+δ
∑T

i=t+1

∑n
k=1−pk(xi ))2

+α‖v‖2,

where β, δ, α are hyperparameters. To prevent from model overfitting, the objective
function is supplied with the regularization term, which is a squared norm of vector
v = (v1, . . . , vn−1))



Experiments - starting weights

We use truncated Newton’s algorithm for optimization.
The function is not convex.
Do starting weights matter?
We used some synthetic datasets and tested different initialization methods. We
restarted the method 50 times and measured final obj. function loss. The table below
shows the standard deviation of the loss for each method

dataset circles diabetes scale moons
method

normal 4.548139e-08 6.684074e-09 7.496055e-09
normal multivariate 1.652018e-08 7.265744e-09 5.570900e-09
normal univariate 3.075394e-08 7.646498e-09 2.445021e-09
random labels 9.307598e-09 2.440747e-09 6.107176e-09
random links diff 2.116533e-08 3.410780e-09 7.626612e-09
zeros 0.000000e+00 5.206897e-10 0.000000e+00



Experiments - unlabeled data

In order to validate our assumption that using unlabeled data helps, we trained and
tested in double cross-validation 2 models. One was given the 20% of labeled data and
20% of links, the other was given also 20% of unlabeled data. The first model tuned
it’s α and β, as well as kernel γ, the second additionally tuned δ.



Experiments - unlabeled data



Experiments - hyperparameters

In order to see how much β (links weight) and δ (unlabeled weight) affects the model’s
performance, we did the following experiment. For several datasets, we fixed β and δ
and performed a double cross-validation on the dataset, optimizing kernel γ and α
hyperparameters. For the sake of simplicity, we assume breast cancer performance as
the ground truth: β=0.7, δ=0.4 and use these values in further experiments.



Experiments - hyperparameters



Experiments - percent of labels and links

In order to see how much information the models gets from labels and links, we
concluded another experiment. For several datasets, we sampled different % of links
and labels, performed grid search (α, γ) with cross-validation over the reduced dataset
- labels, links and unlabeled data - then tested the model on a separate test set. The
results below show different mean test scores for different %.



Experiments - percent of labels and links


	Introduction
	Demonstration
	Mathematics
	Experiments


