
Maximal Entropy Random Walk  
the most random among random walks   

(maximizing entropy production) 
 

RW for minimal information about a system 
in agreement with the maximum entropy principle. 

strong localization property, scale-free, nonlocal 
 

Some applications: 
- maximizing informational capacity of channel under some constraints 

(data storage/transmission, maybe linguistics (?)), 
- corrections to diffusion models to get agreement with quantum 

predictions (diffusion, conductance, molecular dynamics), 
- metrics for complex networks, data mining (e.g. centrality measure, 

saliency regions, PageRank, SimRank, community detection) 
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We need 𝒏 bits of information to choose one of 𝟐𝒏 possibilities. 
 

For length 𝑛  0/1 sequences with 𝑝𝑛 of “1”, how many bits we need to choose one? 
  

 
  

A sequence of symbols with (𝑝𝑠)𝑠=0..𝑚−1  probability distribution 
contains asymptotically 𝑯 = ∑ 𝒑𝒔 𝐥𝐠(𝟏/𝒑𝒔)𝒔   bits/symbol (𝐻 ≤ lg(𝑚)) 

 

Seen as weighted average: 
symbol/event of probability 𝒑 contains 𝐥𝐠(𝟏/𝒑) bits. 

 
(Jaynes) principle of maximum entropy: while limited knowledge, the 
safest assumption is probability distribution which maximizes entropy. 



Fibonacci coding – as a bit sequence with constraints: no two neighboring ‘1’s 

e.g. 0010101000010101001001 – each sequence should be equally probable 
What about statistics of a single step? 

 

𝑀 = (
1 1
1 0

)           𝑆 = (
𝑞 1 − 𝑞
1 0

)            𝑞 = ?  

 

What 𝒒 should we choose to maximize informational capacity? 

Stationary probability:  𝜋 = (Pr(0) , Pr(1))𝑇                 
 𝜋𝑆 = 𝜋 

𝜋 = (
1

2−𝑞
, 1 −

1

2−𝑞
)  

  

Entropy – informational content: 

𝐻 = ∑ 𝜋𝑖

𝑖

∑ 𝑆𝑖𝑗 lg(1/𝑆𝑖𝑗) =

𝑗

𝜋0 ⋅ ℎ(𝑞) 

 

𝐻𝑚𝑎𝑥 ≈ 0.694241913 bits/node      

for      𝑞 =
(√5−1)

2
≈ 0.618034  



My original MERW motivation: maximizing capacity under constraints 
for 2D analogue of Fibonacci coding (“hard square”: no two neighboring ‘1’s) 

We get 𝑯 ≈ 𝟎. 𝟓𝟖𝟕𝟖𝟗 bits/node 
 

Some application: 
use magnetic dots (twice) more densely, 

at cost of constraints – two dots cannot overlap. 
2 ⋅ 0.58789 ≈ 1. 𝟏𝟕𝟔 

We get 17.6% capacity increase due to better positioning! 
(e.g. using 1D MERW on the space of possible succeeding lines) 

 
 
 
Approximate with finite width stripe  ∞ × 𝑚 
(large) alphabet: allowed slices  
Adjacency matrix: possible neighbors 
… find MERW for adjacency matrix… ? 
 
→ translate into local transition probability rules  
  




   Graph  (𝑀)                stochastic matrix (𝑆)                  stationary probability (𝜋) 

   𝑀𝑎𝑏 ∈ {0,1}          0 ≤ 𝑆𝑎𝑏 ≤ 𝑀𝑎𝑏  , ∀𝑎 ∑ 𝑆𝑎𝑏 = 1𝑏                   ∑ 𝜋𝑎𝑆𝑎𝑏 = 𝜋𝑏𝑎  

Average entropy production per step:  ∑ 𝜋𝑎 ∑ 𝑆𝑎𝑏lg (1/𝑆𝑎𝑏)𝑏𝑎  
 

GRW and MERW are equal on regular graphs, but e.g. on defected 2D lattice: 
 

 
 

GRW assumes we know exactly the used probabilistic algorithm,  has characteristic length 
MERW assumes only there are no hidden local probabilistic rules,  is scale-free limit of GRW  



MERW as scale-free limit of GRW    𝑆𝑎𝑏
𝐺𝑅𝑊𝑘 ∝ 𝑀𝑎𝑏 ∑ (𝑀𝑘−1)𝑏𝑐𝑐  

GRW: each outgoing edge is equally probable(𝑘 = 1)      
    

  GRW𝑘 – each outgoing length 𝑘 
path is equally probable. 

 

        In the limit, the number 
    of paths starting with 𝑎 → 𝑏 
    is proportional to  

    coordinate (𝜓𝑏) of the 
    dominant eigenvector of 𝑀 : 
         

                    𝑀𝜓 = 𝜆𝜓 
 

 
Frobenius-Perron theorem for connected graph: real, nondegenerated  𝜆 > 0 ,  ∀𝑎 𝜓𝑎 > 0  
 

Normalization for vertex 𝑎:   ∑ 𝑀𝑎𝑏𝜓𝑏 = (𝑀𝜓)𝑎 = 𝜆𝜓𝑎𝑏  
 

Finally: while being in 𝑎, probability of jumping to 𝑏 is:       
(symmetric 𝑀:) 

For which stationary probability distribution (𝜋𝑆 = 𝜋) is 𝜋𝑎 ∝ 𝜓𝑎
2 

 

(𝜋𝑆)𝑏 = ∑ 𝜓𝑎
2 ⋅

𝑀𝑎𝑏

𝜆𝑎
𝜓𝑏

𝜓𝑎
= ∑ 𝜓𝑎𝑀𝑎𝑏 ⋅

𝜓𝑏

𝜆𝑎 = 𝜆𝜓𝑏
𝜓𝑏

𝜆
= 𝜓𝑏

2 = 𝜋𝑏        (𝑆𝑘)𝑎𝑏 =
(𝑀𝑘)

𝑎𝑏

𝜆𝑘

𝜓𝑏

𝜓𝑎
  



Renormalization (being scale-free: discretization independent) 
 

We can change not only time scale, but also spatial 
 

((𝑆MERW(𝑀))
𝑙
)

𝑖𝑗
= ∑

𝑀𝑖𝛾1

𝜆

𝜓𝛾1

𝜓𝑖
⋅

𝑀𝛾1𝛾2

𝜆

𝜓𝛾2

𝜓𝛾1

⋅ … ⋅
𝑀𝛾𝑘−1𝛾𝑘

𝜆

𝜓𝑗

𝜓𝛾𝑘−1𝛾1,…,𝛾𝑘−1

=
(𝑀𝑙)𝑖𝑗

𝜆𝑘

𝜓𝛾𝑘

𝜓𝛾0

= (𝑆MERW(𝑀𝑙))
𝑖𝑗

 

 
Usually not true for GRW 

 

 
  



GRW: stationary probability ∝ 𝑑𝑖 = ∑ 𝑀𝑖𝑗𝑗  
 

MERW: stationary probability  ∝ 𝜓2   where   𝑀𝜓 = 𝜆𝜓      for largest  𝜆     
 

 

Defected       (𝜆𝜓)𝑥 = (𝑀𝜓)𝑥 = 𝜓𝑥−1 + (1 − 𝑉𝑥)𝜓𝑥 + 𝜓𝑥+1          /−3𝜓𝑥          /∙ −1   
 

1D lattice     𝐸𝜓𝑥 = −(𝜓𝑥−1 − 2𝜓𝑥 + 𝜓𝑥+1) + 𝑉𝑥𝜓𝑥       for smallest   𝐸 = 3 − 𝜆 
 

Nonlocal – depends on the whole graph! 
 

    
 



Idealized situation: defected lattice (cyclic boundary conditions) → 
 

“Natural” stochastic choice (“drunken sailor”):  
Each outgoing edge is equally probable (GenericRW) 
 

Bose-Hubbard Hamiltonian (→ 𝐒𝐜𝐡𝐫ö𝐝𝐢𝐧𝐠𝐞𝐫) for single particle: 

�̂� = −𝑡 ∑ (�̂�𝑗
+�̂�𝑖 + �̂�𝑖

+�̂�𝑗)(𝑖,𝑗)∈ℰ = −𝑡 ⋅ ”adjacency matrix” 
 

 
 

Discrepancy source: GRW only approximates maximal uncertainty principle  



MERW evolution: 
 

First “stochastic shift” toward near (overlapping) eigenvectors (sub-diffusion),  
then “deexcitate” toward nearer ground state (super-diffusion) 

 

 
 

Eigenvectors |𝜓𝑘| : 
 

 



Add potential to emphasize some scenarios: Boltzmann distribution 
maximizes entropy while fixed sum of energies (minimizes free energy) 

 
 

max
(𝑝𝑖):∑ 𝑝𝑖=1𝑖

(∑ 𝑝𝑖 ln(1/𝑝𝑖) − ∑ 𝑝𝑖𝐸𝑖𝑖𝑖 ) = ln(∑ 𝑒−𝐸𝑖
𝑖 )       for        𝑝𝑖 ∝ 𝑒−𝐸𝑖 

 

 
Original MERW:  𝐴𝑖𝑗 ∈ {0,1} 

Maximize entropy - uniform probability distribution among paths 
 

Generally: minimize free energy – Boltzmann distribution among paths: 
 

𝑀𝑖𝑗 = 𝐴𝑖𝑗𝑒−𝛽𝑉𝑖𝑗 ∈ [0, ∞)        Energy of path 𝛾:    𝑉𝛾0𝛾1
+ 𝑉𝛾1𝛾2

+. . +𝑉𝛾𝑙−1𝛾𝑙
 

 

 

𝑆𝛾0𝛾1
𝑆𝛾1𝛾2

…  𝑆𝛾𝑙−1𝛾𝑙
=

𝑀𝛾0𝛾1
… 𝑀𝛾𝑙−1𝛾𝑙

𝜆𝑙

𝜓𝛾𝑙

𝜓𝛾0

=
𝑒

−𝛽(𝑉𝛾0𝛾1+𝑉𝛾1𝛾2+..+𝑉𝛾𝑙−1𝛾𝑙
)

𝜆𝑙

𝜓𝛾𝑙

𝜓𝛾0

 

 
Alternative view: 𝑴𝒊𝒋 is the number of edges (not necessarily 1, integer) 

 



Simultaneous Multi-Scale Diffusion Estimation an 
Tractography Guided by Entropy Spectrum Pathways 
Vitaly L. Galinsky and Lawrence R. Frank, IEEE 
Transactions on Medical Imaging (2014)  



Information pathways in a disordered lattice, 
Lawrence R. Frank 1,2,* and Vitaly L. Galinsky, Phys. Rev. E (2014) 

 
 

Entropy Spectrum 
Pathways (ESP):  
generalization to 
multiple 
dominant eigenvectors  
(entropy wells) 



Using MERW properties (localization) for various applications 

JG Yu, J Zhao, J Tian, Y Tan, Maximal Entropy Random Walk for Region-Based Visual Saliency (IEEE, 2014) 
 

 



- divide picture into regions (8x8 blocks, 
“superpixels”) 

- create graph among regions using similarities 

as weights (𝑤𝑖𝑗 = exp (−𝑑(𝑟𝑖, 𝑟𝑗)),  

- saliency map is the stationary probability 
distribution of GRW or MERW 

  



WEAKLY SUPERVISED OBJECT LOCALIZATION VIA MAXIMAL ENTROPY RANDOM WALK, 
Liantao Wang, Ji Zhao, Xuelei Hu, Jianfeng Lu, IEEE ICIP 2014 
 

Divide the picture into regions and use 
SVM to evaluate weights of features 
(𝑤𝑖) for different objects (e.g. car, dog)  

 
 

 
 

  



Centrality (graph theory, 
http://en.wikipedia.org/wiki/Centrality ): 

indicators which identify the most 

important vertices within a graph. 
 

Examples (for the same graph): 

A) Degree centrality  

(𝑒. 𝑔. 𝐶(𝑣) ∝ deg(𝑣)    −  GRW),  

B) Closeness centrality  

(𝑒. 𝑔. 𝐶(𝑣) ∝ ∑ 1/𝑑(𝑣, 𝑤))𝑤≠𝑣 ,  

C) Betweenness centrality  

(how many shortest paths go through 𝑣) 

D) Eigenvector centrality  (MERW-like),  

E) Katz centrality (e.g. PageRank), 

F) Alpha centrality. 

 

Drawing 2D diagrams for graphs:  

positions from two high eigenvectors  

(of 𝑀 or Laplacian: 𝐿 = diag(deg(𝑖)) − 𝑀 ) 

http://en.wikipedia.org/wiki/Centrality
http://en.wikipedia.org/wiki/Degree_centrality
http://en.wikipedia.org/wiki/Closeness_centrality
http://en.wikipedia.org/wiki/Betweenness_centrality
http://en.wikipedia.org/wiki/Eigenvector_centrality
http://en.wikipedia.org/wiki/Katz_centrality
http://en.wikipedia.org/wiki/Alpha_centrality


Delvenne, J.-C. & Libert, A.-S. Centrality measures and thermodynamic 
formalism for complex networks, Phys. Rev. E 83, 046117 (2011). 
 

(e.g. Google)  PageRank  (GRW) →   Entropy Rank   (MERW) 
(𝛼 = Pr(going to a random page), 𝐸 = 𝑒−𝑈0 weight out of the graph edges) 

 
- vertex 8 becomes more interesting than 6 (pointing to “good pages”), 

- cliques are swelling (localization) – problem with “link farms” … 



Experiments on “289 000 – node piece of the Stanford web (http://www.kamvar.org/)” 
 

PageRank 
 
 

High E FER 
(good for finding  

best pages) 

 

 
low H  FER 

 
 

low H  FER 
vertex with added 
100 vert. clique 

(“farm link”) 
200 000𝑡ℎ → 627𝑡ℎ 
(plateau → clique ?) 

http://www.kamvar.org/


Mean first-passage time (MFPT)   (e.g. for community detection) 
𝑀𝑖𝑗  – expected minimal time to reach vertex 𝑗 starting from 𝑖. 

Y. Lin, Z. Zhang, Mean first-passage time for maximal-entropy random walks in complex networks (Nature, 2014) 

 

Erdős–Rényi (ER): Pr(→ 𝑣𝑗) = const 

Barabási–Albert (BA): Pr(→ 𝑣𝑗) ∝ 𝑘𝑗 

(scale-free : 𝑃(𝑘)~𝑘−𝛾) 
 

1000 vertices 
 

J. Ochab, Maximal-entropy random walk unifies centrality measures (Phys. Rev. E, 2012) 



SimRank: measure how similar two vertices are 
 

G. Jeh and J. Widom. Simrank: a measure of structural-context similarity (KDD 2002) 
 

𝑠(𝑎, 𝑏) =
𝐶

|𝑁(𝑎)||𝑁(𝑏)|
∑ ∑ 𝑠(𝑥, 𝑦)𝑦∈𝑁(𝑏)𝑥∈𝑁(𝑎)               (1 𝑖𝑓 𝑎 = 𝑏, 0 𝑖𝑓 𝐼(𝑎) ∩ 𝐼(𝑏) = ∅) 

 

can be expressed by Expected−𝑓 Meeting Distance (EMD) of two walkers (𝑎, 𝑏) 
 

𝑠′(𝑎, 𝑏) = ∑ 𝑃[𝑡] 𝑓(𝑙(𝑡))𝑡:(𝑎,𝑏)⇝(𝑥,𝑥)         for   𝑓(𝑧) = 𝑧        or    𝑓(𝑧) = 𝐶𝑧 
 

𝑃[𝑡]   - GRW probability of path 𝑡 

  
Link prediction – which new interactions (links) are likely to occur? 
Predicting evolution, suggesting connections, finding weak/fake links 

The more similar they are, the more likely they will connect 
Li, R. H., Yu, J. X. & Liu, J. Link prediction: the power of maximal entropy random 

walk (ACM conference, 2011): 
 

Replace GRW with MERW in 𝑃[𝑡], getting  𝑆(𝑎, 𝑏) =
𝐶𝜓𝑎𝜓𝑏

𝜆2
∑ ∑

𝑆(𝑥,𝑦)

𝜓𝑥𝜓𝑦
𝑦∈𝑁(𝑏)𝑥∈𝑁(𝑎)     

 

MERW – more distinctive, scale-free (does not depend on discretization) 



27 link prediction methods (AUC: the higher the better), “ME” – maximal entropy  



Kernel between 𝐺 and 𝐺′: 𝑘(𝐺, 𝐺′) = 𝑞×
𝑇 ⋅ (∑ 𝜇(𝑘)𝑘≥0 𝑊×

𝑘) ⋅ 𝑝×   e.g.   (1 − 𝜆𝑊×)−1 or  𝑒𝜆𝑊× 

NMEDK – normalized maximal entropy heat diffusion kernel, NMERK - …Laplacian kernel 

𝑆𝑖𝑗
𝐺𝑅𝑊 =

𝑀𝑖𝑗

deg(𝑖)
             𝜋𝑖

𝐺𝑅𝑊 ∝ deg(𝑖)                         (𝑆𝑀𝐸𝑅𝑊)𝑖𝑗
𝑡  =

(𝑀)𝑡
𝑖𝑗

𝜆𝑘

𝜓𝑗

𝜓𝑗
           𝜋𝑖

𝑀𝐸𝑅𝑊 ∝ 𝜓𝑖
2 

GRW Laplacian (𝑀𝑖𝑖 = 0):Δ𝑖𝑗 = −L𝑖𝑗 = 𝑀𝑖𝑗 − deg(𝑖) ⋅ 𝛿𝑖𝑗    (𝑤𝑇L𝑤 = ∑ (𝑤𝑖 − 𝑤𝑗)
2

{𝑖,𝑗}∈𝐸 ) 

In analogy to discretized continuous Laplacian: (∂𝑥𝑥𝑤)(𝑥) ≈ 𝑤(𝑥 − 1) − 2𝑤(𝑥) + 𝑤(𝑥 + 1) 

Or relaxation of capacitor network:  
𝑑

𝑑𝑡
𝑍𝑖(𝑡) = ∑ (𝑍𝑗(𝑡) − 𝑍𝑖(𝑡))𝑗: 𝑖~𝑗  . 

General Laplacian ("continuity equation": ∀𝑖 ∑ 𝐿𝑖𝑗 = 0𝑗 , 𝑀𝑖𝑗 = 𝑀𝑗𝑖 ⇒ Pr(𝑖, 𝑗) = Pr(𝑗, 𝑖)):     

(const ⋅)   Δ𝑖𝑗 = (Π(𝑆 − 𝟏))
𝑖𝑗

= Pr(𝑖, 𝑗) − Pr(𝑖) ⋅ 𝛿𝑖𝑗              MERW: Δ𝑖𝑗 = 𝑀𝑖𝑗
𝜓𝑖𝜓𝑗

𝜆
− 𝜓𝑖

2 ⋅ 𝛿𝑖𝑗 

Normalized MERW Laplacian:   (Δsym)
𝑖𝑗

=
𝑀𝑖𝑗

𝜆
− 𝛿𝑖𝑗 

Heat equation and kernel: 
𝑑

𝑑𝑡
𝐾𝑡 = Δ𝐾𝑡       𝐾𝑡 = exp(𝑡Δ) = lim

𝑛→∞
(1 +

𝑡Δ

𝑛
)

𝑛
= ∑

(𝑡Δ)𝑘

𝑘!𝑘  

 

MEPDM – maximal entropy inverse p-distance with matrix exponentiation 

Inverse P-distance: 𝑃(𝑖, 𝑗) = ∑ 𝑃[𝑡] ⋅ 𝛼𝑙(𝑡𝑖𝑗)
𝑡𝑖𝑗:𝑖⇝𝑗      (or      𝛼𝑙/𝑙!  ) 

for MERW : 𝑙(𝑡𝑖𝑗) = 𝑙(𝑡𝑖𝑗
′ ) ⇒ 𝑃[𝑡𝑖𝑗] = 𝑃[𝑡𝑖𝑗

′ ]       so        𝑃(𝑖, 𝑗) =
𝜓𝑗

𝜓𝑖
∑ (

𝛼

𝜆
)

𝑙
(𝐴𝑙)𝑖𝑗𝑙≥1  

Hitting/commute time (MFPT): ℎ(𝑖, 𝑗) = [𝑖 ≠ 𝑗](1 + ∑ 𝑆𝑖𝑘ℎ(𝑘, 𝑗)𝑘 )                 𝑐(𝑖, 𝑗) = ℎ(𝑖, 𝑗) + ℎ(𝑗, 𝑖) 



MERW – the most random among random walks 
uniform distribution among paths, not edges (GRW) 

 

- As the choice of statistical parameters of an informational channel 
MERW allows to maximize channel capacity under some constraints 

(language?) 
 

- As random walk/diffusion (scale-free) 
GRW: the walker indeed performs succeeding random decisions 

MERW: only represents our (lack of) knowledge about a complex dynamics 
 

- For metrics to analyze complex network  
GRW sees only degrees of vertices, poorly distinguish nodes 

MERW allows to evaluate importance in the space of possible paths 
 

- social/evolutionary entropy (Lloyd Demetrius): 
“thinking” in terms of paths (reason→result chains) of possibilities? 

 

GRW → MERW  
in many cases improves performance or agreement 


