
Introduction
Lattice Associative Memories

Applications
Concluding remarks

Lattice Computing: applications

Manuel Graña

ENGINE project, Wroclaw University of Technology (WrUT), Poland
Computational Intelligence Group, Basque Country University (UPV/EHU), Spain

TFML 2015,
Bedlewo, Poland, February 18th, 2015

Manuel Graña Lattice Computing: applications



Introduction
Lattice Associative Memories

Applications
Concluding remarks

Summary of the talk

Introduce Lattice Computing paradigm
Focus on Lattice Autoassociative Memories
Applications

Hyperspectral image unmixing
Face recognition
MRI classification
fMRI processing
Multivariate Mathematical Morphology

Hyperspectral image
brain networks on resting state fMRI
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Lattice Computing

Definition
Lattice Computing is the class of algorithms built in the realm of
Lattice Theory.

Define computations in the ring of the real valued spaces
endowed with some (inf, sup) operators (Rn, _, ^,+),
or use lattice theory to produce generalizations or fusions of
conventional approaches.
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Mathematical Morphology

Classical application of lattice theory to signal and image
processing
Filtering and detection

Erosion and dilation operators buit on infimum and supremum
operators

non-linear convolution-like processes with structural elements

Filters: Opening and closing
Degmentation: morphological gradient and watershed
Detection: top-hat, hit-and-miss
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Formal Concept Analysis

Application of lattice theory to semantic analysis
Ontology induction from data

intensional (attributes) and extensional (instances)
representation of concepts
building the lattice induced by the partial order of concepts

objects are inherited from the bottom (?), Concept Lattices can be optimized
by defining the related Inheritance Graph, whose nodes contain only the addi-
tional elements, objects and attributes, with respect to the descendants and
ancestors, respectively. However, the optimized representation of a Concept
Lattice will not be addressed in this paper and, for reader’s convenience, all
the objects and attributes of a concept will be explicitly given.

3. Domain ontology

We have seen in Section 1 that a domain ontology is a ‘‘shared understand-
ing of the domain of interest’’ [51], where ‘‘shared’’ means that the ontology
definitions are accepted by a panel of experts in the given domain. The foll-
owing definition is also worthwhile [20]: an ontology is a ‘‘formal, explicit
specification of a shared conceptualization’’, where a ‘‘conceptualization’’ is
an abstract model of some phenomenon of the world which identifies the
relevant concepts (or entities) and relationships among the concepts of that
phenomenon. Again, ‘‘shared’’ means that an ontology captures consensual
knowledge, whereas ‘‘formal’’ refers to the fact that an ontology should be
machine-understandable. Therefore, a domain ontology contains a set of
interrelated concepts, each associated with a formal definition providing an
unambiguous meaning of the concept in the given domain.

((A,L,P,Re,Ro),(Cap)) ((I,L,P,Ro),(Riv)) ((C,I,Re),(Ski)) ((A,C,I,P,Ro),(Eur))

((A,P,Ro),(Cap,Eur)) ((L,P,Ro),(Cap,Riv)) ((Re),(Cap,Ski))

((A,C,I,L,P,Re,Ro),( ))

((A,Ro),(Arc,Bea,Cap,Eur))

((C,I),(Eur,Ski))

((P,Ro),(Cap,Eur,Riv)) ((I),(Eur,Riv,Ski))

((Ro),(Arc,Bea,Cap,Eur,Riv))

(( ),(Arc,Bea,Cap,Eur,Riv,Ski))

((I,P,Ro),(Eur,Riv))

Fig. 1. Concept Lattice of the European Cities context.

A. Formica / Information Sciences 176 (2006) 2624–2641 2629
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Lattice Associative Memories

Builiding learning algorithms with morphological operators
Associative Memories

Store and recall patterns
Dual memories from infimum and supremum operators
Nice properties:

Infinite storage capacity of real valued patterns
Robustness against specific erosive/dilative noise
Not-nice: sensitivity to general additive noise
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Kaburlasos’ Lattice Interval Numbers

A new general data type: Intervals Numbers (IN)
Conventional data types can be mapped into IN
The lattice valuation function allows to define error measures
Variations of conventional learning algoritms

Generalization of Fuzzy-ART
Lattice Self Organizing Map

Table 2 shows the performance of our proposed method, comparatively with alternative methods from the literature.
Note that all the methods in Table 2 have used similar training/validation/testing data sets. In conclusion, our proposed
method produced both a small testing error Etst ! 0:015 and a small number of (three) rules.

5.4. Additional application details and discussion

Our proposed method has employed a fairly small ð4# 4Þ SOM grid size. Even though size 4# 4 can increase (INSOM, line
25), it never did so in our computational experiments. We carried out additional experiments using a 6# 6 grid size. In con-
clusion, we obtained identical models as with the 4# 4 grid, moreover the data processing time almost doubled. Likewise
results were obtained for larger grid sizes. Hence, it appears that a 4# 4 grid size is adequate for our experiments here.
We point out that the employment of a SOM grid here did not aim at data visualization. Rather, our focus, in this work,
was on both practical efficiency and effectiveness in system modeling applications. The end result has justified our practices
since they compared favorably with the results by alternative methods from the literature regarding the (small) number of
rules, the (high) speed of structure identification, and the capacity for (comparatively accurate) generalization, in three
experiments regarding benchmark problems.

In general, our computational experiments have demonstrated that an ‘‘initial” model, as locally optimum, includes mar-
ginally overlapped INs; whereas, a ‘‘final” model, as globally optimum, includes heavily overlapped INs. For example, the
aforementioned facts are demonstrated clearly in Fig. 2.

A novelty introduced in this work is an algebraic (affine) transformation of a probability distribution to a possibility dis-
tribution using (9). We remark that a number of probability-possibility transformations have been introduced ‘‘in principle”
in the literature, including the ones detailed by Dubois et al. [11], without emphasizing practical applications. On the other
hand, the ‘‘application-oriented” work here has proposed a parametric (affine) probability-to-possibility transformation,
where the corresponding parameters can be optimally estimated/induced from data. In conclusion, both the effectiveness
and the efficiency of our proposed techniques were demonstrated here, comparatively with alternative techniques from
the literature, in three non-linear system benchmark modeling applications.

Figs. 2, 4 and 5 have demonstrated a graphical interpretation of our proposed affine transformation F 0i;j ¼ ai;jðFi;j & xFi;j Þþ
xFi;j þ bi;j of (9), for various values of both the scaling parameter ai;j 2 ð0;3( and the (normalized) translation parameter

Fig. 4. Rule base of our (a) ‘‘initial” and (b) ‘‘final” model, in the three-input–single-output, non-linear, dynamic system example.

Table 1
Two-input–single-output system: comparison of our proposed method with alternative methods.

Method Rules Testing error

Sugeno and Yasukawa [51] 6 0.0790
Kim et al. [30] 3 0.0190
Papadakis and Theocharis [39] 4 0.0095
Our proposed method 4 0.0086

S.E. Papadakis, V.G. Kaburlasos / Information Sciences 180 (2010) 5060–5076 5071
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LAAM definitions

LAAMs are auto-associative neural networks
neuron functional activations built on morphological (lattice)
operations.

LAAMs present interesting properties such as perfect recall,
unlimited storage and one-step convergence.
Proposed by Ritter et al.1 2

We found applications besides image storage and retrieval

1G. X. Ritter, P. Sussner, and J. L. Diaz-de Leon. Morphological associa-
tive memories. Neural Networks, IEEE Transactions on, 9(2):281–293, 1998.

2G. X. Ritter, J. L. Diaz-de Leon, and P. Sussner. Morphological
bidirectional associative memories. Neural Networks, 12(6):851–867, 1999.
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LAAM definitions

Input/output pattern pairs

(X , Y ) =
n⇣

x

⇠, y⇠
⌘

; ⇠ = 1, .., k
o

Linear heteroassociative neural network

W =
X

⇠

y

⇠ ·
⇣

x

⇠
⌘0

.

Erosive and dilative LAMs, respectively

W

XY

=
k

^

⇠=1



y

⇠ ⇥
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�x

⇠
⌘0
�

and M

XY

=
k

_

⇠=1



y
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�x

⇠
⌘0
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,

where ⇥ is any of the _⇤ or ⇤̂ operators,
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LAAM definitions

Operator _⇤ denotes the max matrix product

C = A _⇤ B = [c
ij

] , c

ij

=
_

k=1..n

�

a

ik

+ b

kj

 

,

Operator ⇤̂ denotes the min matrix product

C = A ⇤̂ B = [c
ij

] , c

ij

=
^

k=1..n

�

a

ik

+ b

kj

 

.
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LAAM definitions and properties

Definition
When X = Y then W

XX

and M

XX

are called Lattice
Auto-Associative Memories (LAAMs).

Perfect recall for an unlimited number of real-valued stored
patterns

W

XX

_⇤ X = X = M

XX

⇤̂ X

Convergence in one step for any input pattern. i.e. reaching a
fixed point in one step

if WXX _⇤ z = v then WXX _⇤ v = v

if MXX _⇤ z = u then MXX ⇤̂ u = u.
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Fixed points of M
XX

and W
XX

a

aG.X.Ritter,G.Urcid,“Lattice algebra approach to endmember determination
in hyperspectral imagery,” in P. Hawkes (Ed.), Advances in imaging and
electron physics, Vol. 160, 113–169. Elsevier, Burlington, MA (2010)

7. RELATIONSHIPS AMONG X, WXX, MXX, AND F(X)

IfY!Rn is convex and x2Y, then x is an extreme point ofY if and only if there
do not exist two points y1, y22Y such that y1 6¼ x 6¼ y2 and x2 [y1, y2], where
[y1, y2] ! Y denotes the line interval {z 2 Y: z ¼ ly1 þ (1 $ l)y2, 0 % l % 1}.

It is well known that a closed bounded convex set is completely
specified by its extreme points. In other words, if Y is a closed bounded
convex set and Z ! Y is the set of extreme points of Y, then Z 6¼ ! and
C(Z) ¼ Y, where C(Z) denotes the convex hull of Z (Eggleston, 1963;
Hadwiger, 1957). For instance, the points v‘ and u‘ are extreme points of
the convex set B (v‘, u‘). However, they are not extreme points of the
unbounded set F(X). For example, the point u‘ is a point of the line

Lðu‘Þ ¼
\

i<‘

Eu‘ðdi‘Þ \
\

‘<j

Eu‘ðd‘jÞ; (4.31)

so that u‘ 2 [u‘ $ a, u‘ þ b] ! L(u‘) ! @F(X) ! F(X) for any pair of real
numbers a > 0 and b > 0.

Similarly, the point v‘ is a point on the line

Lðv‘Þ ¼
\

i<‘

Ev‘ðdi‘Þ \
\

‘<j

Ev‘ðd‘jÞ: (4.32)

x2

x3

x9 x4

x12

x10
x1

u1

u2 5 x1

Eu1(d12)

Ev1(d12)

x2

5

v2

v1

x11

x8

x5

x6

x7

Hv
–

1(d12)

Hu
+

1(d12)

FIGURE 17 The set X ! R2 and the fixed point set FðXÞ ¼ "Hþ
u1ðd12Þ \ "H$

v1ðd12Þ. The fixed
point set is the cross-hatched area bounded by the lines Eu1ðd12Þ and Ev1ðd12Þ of slope 1.
The two hyperboxes Bðvl; ulÞ ! R1

l for ‘ ¼ 1, 2 become closed intervals in R2, which
are bounded by the open circles representing v‘ and u‘.

Lattice Algebra Approach to Endmember Determination in Hyperspectral Imagery 145

Author's personal copy
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Linear Mixing Model

Linear Mixing Model (LMM):

x =
M

X

i=1

a

i

e

i

+ w = Ea + w, (1)

x is the d -dimension input vector,
E is the d ⇥ M matrix of d -dimension endmembers

ei , i = 1, .., M,

defining a convex region covering the measured data.
endmembers are affine independent

a is the M-dimension abundance vector, and
non-negative ai � 0, i = 1, .., M,
fully additive to 1:

PM
i=1 ai = 1.

w is the d -dimension additive observation noise vector.
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Endmember induction Algorithm

Definition
Endmember Induction algorithms (EIA): extracting a set of
endmembers E from the data X

Types of EIA
Geometric: searching for simplex covering
Algebraic (PCA, ICA, NNMF)
Lattice computing: equivalence between lattice independence
and affine independence
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Ritter’s EIA

Algorithm 2 Endmember Threshold Selection Algorithm (ETSA) based on [27,28]
(1) Given a set of vectorsX =

n

x1, ...,xk
o

⇢ Rn compute the min and max auto-
associative memoriesWXX MXX from the data. Their column vector setsW
andM will be the candidate endmembers.

(2) RegisterW andM relative to the data set adding the maximum and minimum
values of the data dimensions (bands in the hyperspectral image). Obtain W
andM as follows:
(a) Compute ui =

Wn
⇠=1 x⇠

i and vi =
Vn

⇠=1 x⇠
i .

(b) Computemi = mi + vi and wi = wi + ui

(3) Remove lattice dependent vectors from the joint setW �

M .
(4) Compute the standard deviation along each dimension of the candidate end-

member vectors, denoted by the vector �!� = {�1, . . . , �n}.
(5) Assume the first vector in the set v1 2 W

�

M as the first endmember, E =
{v1}

(6) Iterate for the remaining vectors v 2 W
�

M
(a) If kv � ek < ��!� for any e 2 E then discard v otherwise include v in E

old Selection Algorithm (ETSA) are presented in Algorithm 2

Some comments about algorithm elements are in order. The first comment relates
to the selection of the first endmember in the set v1. It may seem at first notice a
rather arbitrary approach to pick it randomly from the image. We refer however the
reader to figure 6. There it is possible to appreciate that the candidate endmembers
from theW abdM LAMs are highly correlated. Although some groupings (we do
not call them clusters because they are not well defined) could be visually detected,
this effect would change depending on the bands being plotted. The idea we want
to impress on the reader is that there is no adequate way to select the most “ap-
propriate” initial vector because any clustering rule applied on the raw collection
of endmember candidates will be highly dependent on the initial condition. On the
other hand, any selected vector will be very likely a good representative of a group
of vectors “around” it. Plots of distances (not reproduced here for lack of space)
from a given candidate to the remaining ones show a narrow valley surrounded by
random values. The valley defines the grouping around a vector, and these group-
ings have strong intersection among “neighboring” vectors. The second comment
relates to the threshold parameter. We do not have any model of the distribution of
the candidate endmembers. We are assuming as a rule of thumb that the standard
deviation of the data can be taken as a measure unit to set the boundaries between
groupings.

6 Endmember Induction Heuristic Algorithm (EIHA)

For the sake of completeness we recall here our Endmember Induction Heuristic
Algorithm (EIHA) maintaining the notation used in the original references [6,7,10].

10

Figure : A specification of Ritter’s EIA
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Convex Polytope from Ritter’s EIAa

aG.X.Ritter,G.Urcid,“Lattice algebra approach to endmember determination
in hyperspectral imagery,” in P. Hawkes (Ed.), Advances in imaging and
electron physics, Vol. 160, 113–169. Elsevier, Burlington, MA (2010)

Conversely, using the fact that mji ! mi‘ " mi‘ (Theorem 3.1), we have
that "mji # mi‘ " mj‘ for ‘ ¼ 1, . . ., n. Thus, wij ¼ " mji # mi‘ " mj‘ 8 ‘ and,
hence, wij #

Vn
‘¼1ðmi‘ "mj‘Þ ¼

Vn
‘¼1½ðM

‘
XXÞi " ðM‘

XXÞj( ¼
Vn

‘¼1ðm‘
i "m‘

j Þ ¼
!mij or, equivalently, wij # !mij. It follows that WXX ¼ WMM. The proof
that MXX ¼ MWW ¼ MMM is analogous, with the maximum _ replacing
the minimum ^ in the above arguments. □

8. PRELUDE TO AFFINE INDEPENDENCE

The linear unmixing theory assumes that the endmembers are affinely
independent. The vector wj 2 W has the feature that its jth coordinate
corresponds to the highest measured intensity within the jth band of the
dataset X. In this sense, the elements of W can be viewed as excellent
representatives of endmembers of the data cube X. However, it is impor-
tant to note that for any pair {wj,mi} the inequalitiesw

j#mi ormi#wj are
generally false even though mi

j # w
j
j andmi

i # w
j
i. In fact, when using

hyperspectral data one usually obtains w
j
‘ < mi

‘ for several indices ‘.
For this reason, various elements of M may represent important end-
members as demonstrated in Section 5. In this section we establish a
sequence of theorems and corollaries that will aid in establishing neces-
sary and sufficient conditions for extracting affine independent sets of

x1

x2

m1
x1

x6

x5

x4

x3 m2

w1

w2
u

1

2

−1

5

5

x2

−2

v

FIGURE 18 The fixed point set F(X) is the infinite strip bounded by the two lines of
slope 1. The shaded area indicates the intersection of F(X) with the 2D box determined by
u and v. Note that C({x1, . . ., x6})¼ C(X) and C(X)) F(X) \B (v, u). The open circles on the
x1 and x2 axes correspond to column vectors of WXX and MXX.

148 Gerhard X. Ritter and Gonzalo Urcid

Author's personal copy
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Ritter’s EIA endmembers in RGB imagesa

aG. Urcid, JC Valdiviezo-N, GX Ritter, Lattice algebra approach to color
image segmentation,JMIV 42 (2-3), 150-162 (2012)

11

Fig. 3 1st column: sample RGB color images; 2nd col.: scatter plot of a subset of X showing 256 different
colors including the most saturated colors determined fromW andM; 3rd and 4th cols.: tetrahedra determined
from proper subsets ofW �M�{v,u}.

Table 2 Information of sample real RGB color images

Image Pixels (pq) Colors (|X�| = k�) Scaled LAAMs
circuit 65,536 35,932 Wα ,Mα

parrot 65,536 55,347 W β ,Mβ
baboon 65,536 63,106 W γ ,Mγ

Wα =

�

�

255 80 101
71 255 135
46 154 255

�

� , Mα =

�

�

19 203 228
194 19 120
173 139 19

�

� ,

W β =

�

�

255 121 35
55 251 128
1 23 255

�

� , Mβ =

�

�

0 200 254
130 0 228
220 127 0

�

� ,

W γ =

�

�

255 129 72
55 255 156
0 90 255

�

� , Mγ =

�

�

0 200 255
126 0 165
183 99 0

�

� .

Notice that the corresponding minimum and maximum vector bounds {v�,u�} for � =α ,β ,γ
are readily available from the main diagonals of the corresponding LAAM matrices. A 3-D
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12

Fig. 4 1st column: sample RGB color images; 2nd, 3rd, and 4th cols.: quantized grayscale segmented images
composed from results obtained, respectively, with c-means clustering, fuzzy c-means clustering, and scaled
LAAMs + LLS linear unmixing techniques.

scatter plot of each set X showing only 256 different colors, including the extreme points of
the setW �M� {v,u}, is depicted in the second column of Fig. 3 for each sample image.
Two tetrahedra enclosing points of X are illustrated in the third column of the same figure.
The vertices of the left tetrahedron belong to the set W � {v} and those of the right tetra-
hedron are inW � {u}; similarly, in the fourth column of Fig. 3, the left tetrahedron has its
vertices in the setM�{v} and the right tetrahedron is formed with the points of M�{u}.

Again, for each RGB color image in Fig. 3, Eq. (6) was simplified to Eq. (11) setting
q = 1 and solving it using LLS for each x 2 X�, by taking first W � and then M� as the S
matrix for � = α ,β ,γ . It turns out that for the sample images selected the corresponding
3⇥3 computed scaled LAAMs are non-singular matrices (full rank) and, therefore, the so-
lutions found by the linear unmixing scheme are unique. Since the minimum and maximum
bounds {v�,u�} correspond, respectively, to a “dark” color near black and to a “bright” color
near white it is possible to replace a specific column inW or M with one of these extreme
bounds in order to obtain segmentations of dark or bright regions. Thus, final satisfactory
segmentation results are produced by an adequate selection of saturated colors s j from the
set W �M � {v,u}. Figure 4 displays the segmentation produced by applying the cluster-
ing techniques of c-means, fuzzy c-means, and our proposed LAAMs plus linear unmixing
based technique. Results are shown as quantized grayscale images where specific gray tones
are associated with selected colors corresponding to cluster centers or extreme points. Ta-
ble 3 provides the technical information relative to each segmenting algorithm; for example,
“runs” is the number of times an algorithm is applied to a given image. Specifically, in the
Matlab environment, “runs” is equivalent to the “replicates” parameter used for c-means
clustering; exp(U) and min. imp refer to, respectively, the partition matrix exponent and the
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Figure : Convex polytopes from Ritter’s EIA in RGB imagesManuel Graña Lattice Computing: applications
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Graña’s EIAa

aM. Graña, I. Villaverde, J.O. Maldonado, C. Hernandez, Two lattice
computing approaches for the unsupervised segmentation of hyperspectral
images, Neurocomputing 72:2111–2120 (2009)

Algorithm 3 Endmember Induction Heuristic Algorithm (EIHA)
(1) Shift the data sample to zero mean

{f c (i) = f (i) � �!µ ; i = 1, .., n}.
(2) Initialize the set of vertices E = {e1} with a randomly picked sample.

Initialize the set of lattice independent binary signatures X = {x1} =
{(e1

k > 0; k = 1, .., d)}
(3) Construct the AMM’s based on the lattice independent binary signatures:

MXX andWXX .
(4) For each pixel f c (i)

(a) compute the noise corrections sign vectorsf+ (i) = (f c (i) + ��!� > 0)
and f� (i) = (f c (i) � ��!� > 0)

(b) compute y+ = MXX �̂ f+ (i)
(c) compute y� = WXX _� f� (i)
(d) if y+ /2 X or y� /2 X then f c (i) is a new vertex to be added toE, execute

once 3 with the new E and resume the exploration of the data sample.
(e) if y+ 2 X and f c (i) > ey+ the pixel spectral signature is more extreme

than the stored vertex, then substitute ey+ with f c (i) .
(f) if y� 2 X and f c (i) < ey� the new data point is more extreme than the

stored vertex, then substitute ey� with f c (i) .
(5) The final set of endmembers is the set of original data vectors f (i) correspond-

ing to the sign vectors selected as members of E.

We change “morphologically independent” to the new “lattice independent”. Let us
denote

n

f (i) 2 Rd; i = 1, .., n
o

the high dimensional data that may be the pixels in
a multispectral or hyperspectral image, or selected points in shape representation,
�!µ and �!� are, respectively, the mean vector and the vector of standard deviations
computed over the data sample, � the noise correction factor and E the set of al-
ready discovered vertices. The noise amplitude of the additive noise in equation (1)
is�!� , the patterns are corrected by the addition and subtraction of ��!�, before being
presented to the AMM’s. The gain parameter � controls the amount of flexibility
in the discovering of new endmembers. Let us denote by the expression x > 0 the
construction of the binary vector ({bi = 1 if xi > 0; bi = 0 if xi  0} ; i = 1, .., n) .
The detailed description of the steps in the Heuristic Algorithm is presented as the
coding of Algorithm 3. Again, the starting endmember set consists of a randomly
picked pixel. However, this selection is not definitive, because the algorithm may
later change this endmember for another, more extreme, one. The gain parameter
� has a great impact on the number of endmembers found. Low values imply large
number of endmembers. It does control when a pixel spectrum is interpreted as a
random perturbation of an already selected endmember.

11
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Figure : Hyperspectral imaging, source: wikipedia
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behavior than the the selection based on mutual information and other tested ap-
proaches. Nevertheless, there are some unavoidable redundancies. The EIHA finds
fourteen endmembers and the ETSA finds eleven endmembers. The increased num-
ber of endmembers allow to identify new details and structures in the images. The
figure 11 show five selected abundance images computed with the endmembers
from figure 9. We may associate clear meanings to the abundance images: figure
11(a) identifies the shadows of buildings and trees, figure 11(d-e) identifies some
roof structures and buidings, figure 11(b) aggregates rooftops and absorption sur-
faces. All in all, we have five very informative images instead of the three shown in
figure 2. The abundance images shown in 12 are obtained from the endmembers in
figure 10. These images are also informative of structures like roads, buildings and
vegetation.They have less contrast than the ones computed with the endmembers
induced by the heuristic algorithm. Nevertheless, it is not easy to decide which one
is superior in informative content for the user. The conclusion we want to reach is
that both approaches can be tuned to obtain further spectral discrimination.

Fig. 8. Subimage of the Washington D.C. Mall image

7.4 Discussion

We did not perform a systematic accounting of computation time, however we ob-
served that the computing requirements are lower for EIHA than that for ETSA.
The experiments were realized with a Matlab implementation, running over a Pow-
erPC 2Ghz with operating system MacOs 10.4. The EIHA algorithm times to per-
form the endmember induction are one order of magnitude lower than those of
the ETSA. Most of the time needed for the ETSA was devoted to building the
LAMs. After that, endmember selection from the LAMs was very fast. The time
to compute the abundance images is dependent on the number of endmembers. In
our experiments they were of the order of several minutes. Experiments with our
implementations of other methods like CCA [15] required more time, and some
times were unable to find as many endmembers as ETSA and EIHA. We did not
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Fig. 9. Endmembers found by the EIHA described in section 6 with parameter � = 1.5
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Fig. 10. Endmembers found by the ETSA described in section 5 with parameter � = 1.5

implement other approaches discussed in section .

The EIHA has a random component consisting in the selection of the pixel pro-
viding the first endmember. This selection is due to the practical fact that many
hyperspectral images have very bad and noisy spectra in the initial pixels. We did
perform several repetitions of the EIHA algorithm finding very similar abundance
images and endmembers. However changing the gain parameter � has dramatic ef-
fects. The most important is the change on the number of endmembers found. Low
values of this parameter produces a large number of endmembers.

The validation of the algorithm poses several problems. The first is the existence

18

(a) (b)

Figure : (a) patch of washington dc image, (c) EIHA endmembers
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(a) (b) (c) (d) (e)

Fig. 11. Some abundance images computed using the endmembers in figure 9

(a) (b) (c) (d) (e)

Fig. 12. Abundance images computed using the endmembers in figure 10

of a ground truth image to compute the performance indices. Without this informa-
tion, it is impossible to give any numerical measure of the quality of the algorithm.
These ”quantitative indices may be the Jaccard index, or any other suitable index
of the correlation of the ground truth and the abundance images computed from the
endmembers found by the algorithms. For the Washington D.C. image, we do not
know of existence of the ground truth information, so the evaluation must be qual-
itative, unless we use the reported results of supervised classification approaches
reported in the literature as the ground truth. The image has the advantage of rep-
resenting an scene which well know across the globe, with very clear structures, so
that the qualitative evaluation makes sense for it. Even, knowing the ground truth
we may have difficulties to give a quantitative evaluation of the algorithms. We
must decide which way we will associate ground truth classes with unsupervised
detected classes. This is a combinatorial problem whose solution varies as the user
community evolves. For instance, one criteria for the matching could be to associate
ground truth and abundance image from the highest to the lowest correlation, with-
out repetition. This is a greedy strategy that may be very suboptimal, giving very
pessimistic evaluations of the algorithm’s ability to ”uncoverthe real classes. We
dealt with this problem when processing images having well known ground truth
image (which, on top of all, often contain many errors and inexactitudes) [6,7].
Also, when proposing Content Based Image Retrieval (CBIR) systems, the compu-
tation of a quantitative performance index is possible when the exact ground truth
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Figure : LSU estimated abundances from Washington DC patch
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Lattice Independent Component Analysis (LICA)

A non-linear version of Independent Component Analysis
Statistical Independence – > Lattice independence
Endmembers == Lattice Independent sources
Abundance computation == feature extraction
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LICA

Algorithm 1 LICA feature extraction .
1. Given training data matrix

XTR = {xj ; j = 1, . . . , m} 2 RN�m

and testing data matrix

XTE = {xj ; j = 1, . . . , m/3} 2 RN�m/3

2. Apply on XTR an EIA to induce the set of k endmembers

E = {ej ; j = 1, . . . , k}

3. Unmix train and test data: ATR = E#XT
TR and ATE = E#XT

TE .

1
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Application examples

Focus on recent works in our reasearch group
LICA applications

Face recognition: feature extraction
DWI data classification Alzheimer’s Disease

Multivariate Mathematical Morphology
resting state fMRI processing
hyperspectral image spectral-spatial classification
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Face recognition

1st Experiment comparing LICA with PCA, ICA, LDA3

Classification by Extreme Learning Machines, Random Forest
and SVM
Four umbalanced face databases from the FERET database

3Ion Marques, Manuel Graña, Face recognition with Lattice Independent
Component Analysis and Extreme Learning Machines. Soft
Computing,16(9):1525-1537 (2012)
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Face data processing pipeline

Image

DB

Select subset

Ground truth

Face detection

Scale and change format

Feature extraction

Classification

Recogniton

performance

Subsampling

DB 1 DB 2 DB 3 DB 4

Color conversion

for each database

Figure 1. Flowchart of the face recognition process that we have followed.

Figure 2. Example of the rotation that we allowed. Images from FERET database
[48].

The faces were not suitable for recognition, because of the noise produced
by di�erent backgrounds and the di�erences in scale. Therefore, we used the
detection algorithm developed in [50,51] and available in Scilab SIVP. The
algorithm usually detects several faces in a photography of a single subject.
We added a face selection process based firstly on candidate’s size. A second

14
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Figure 1. Flowchart of the face recognition process that we have followed.

Figure 2. Example of the rotation that we allowed. Images from FERET database
[48].

The faces were not suitable for recognition, because of the noise produced
by di�erent backgrounds and the di�erences in scale. Therefore, we used the
detection algorithm developed in [50,51] and available in Scilab SIVP. The
algorithm usually detects several faces in a photography of a single subject.
We added a face selection process based firstly on candidate’s size. A second
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Figure : subject sample
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Figure 3. Histogram showing the class distribution of the DB 1 database.

DB 1 DB 2 DB 3 DB 4

Number of samples 5169 3249 832 347

Number of classes 994 635 265 79

Mean (samples per class) 4.3924 3.1396 5.2835 5.2002

Standard deviation (samples per class) 5.8560 3.4498 4.9904 4.5012

Median (samples per class) 2 2 4 4

Mode (samples per class) 2 2 2 2

Table 1
Summary of the 4 databases used in our experiments.

step checked if in the middle row’s average color composition the red channel
was predominant. This method works well under average lighting conditions
and regardless of skin color. We did not modify the face area selected by the
algorithm. We allowed a partial occlusion of the faces, up to a 20% of the
face area. There were 18 detection failures. We also removed 6 detected faces
because the provided ground-truth deviated from reality. Overall, this method
achieved a success rate of 99.65%. The process is illustrated in figure 4. The
next step was to scale images to 100x100 pixels using bicubic resampling.
Then we needed to do a conversion from RGB to grayscale prior to feature
extraction. We used a Gr = 0.85·R+0.10·G+0.05·B conversion method which
is reported to be the optimal grayscale conversion formula for face recognition
[52].

Feature extraction was performed using the algorithms mentioned on section 2.
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Mean (samples per class) 4.3924 3.1396 5.2835 5.2002

Standard deviation (samples per class) 5.8560 3.4498 4.9904 4.5012

Median (samples per class) 2 2 4 4

Mode (samples per class) 2 2 2 2

Table 1
Summary of the 4 databases used in our experiments.

step checked if in the middle row’s average color composition the red channel
was predominant. This method works well under average lighting conditions
and regardless of skin color. We did not modify the face area selected by the
algorithm. We allowed a partial occlusion of the faces, up to a 20% of the
face area. There were 18 detection failures. We also removed 6 detected faces
because the provided ground-truth deviated from reality. Overall, this method
achieved a success rate of 99.65%. The process is illustrated in figure 4. The
next step was to scale images to 100x100 pixels using bicubic resampling.
Then we needed to do a conversion from RGB to grayscale prior to feature
extraction. We used a Gr = 0.85·R+0.10·G+0.05·B conversion method which
is reported to be the optimal grayscale conversion formula for face recognition
[52].

Feature extraction was performed using the algorithms mentioned on section 2.
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Figure : features of the face databases in the experiment
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Face detection

Figure 4. Detection example. Orange squares show the first and second candidates.
First candidate’s middle row’s RGB values are R=41.95 G=41.97 B=46.60. Second
candidate’s are R=133.03 G=106.84 U=79.49.

PCA has no parameter whatsoever. LDA usually needs a previous dimension
reduction phase. We performed Singular Value Decomposition (SVD) over
the data retaining the maximum amount of eigenvectors. Both ICA Infomax
and ICA-MS also require a the same preprocess. Mean-field ICA has several
parameters, like prior mixing matrix, noise covariance, etc. We found that
constant mixing matrix and noise covariance, as well as power law tail source
prior. This method showed empirically the best results in a reasonable time.

Classifiers also were empirically tuned. The parameters that needed to be set
were, in the case of ELMs, the number of hidden nodes. Random Forest also
only required to set one value, the number of trees. In the case of SVMs, we
chose � � SVM because showed better recognition rate that C-SVM. The �
parameter was also set empirically. Both the � � SVM kernel function and
the ELM activation function were sigmoidal. The three classifiers were tested
with four databases. In all four cases the parameters of the classifiers were
adjusted accordingly in order to achieve the best accuracy possible. As the
databases are highly unbalanced, it’s unfeasible to perform a cross-validation
method like K-folds (many classes have only 2 samples) ore leave-one-out (it
would be too time-consuming). Therefore, we decided to perform a per-class
50% split cross-validation. In other words, we randomly choose the 50% of the
members of each class, having both testing and training set a similar size (not
equal, due to those classes that contain an odd number of images).

16

Figure : Face detection candidates by Viola’s algorithm, source: SciLab,
SIVP toolbox
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Face bases

Figure 5. An instance of the first 5 independent components (ICA Infomax and ICA
MS), endmembers (LICA) and eigenvectors (PCA)

5 Experimental results

We used a computer with Intel i5 2400 processor and 8 G25 2.B of memory to
run the experiments. All of the feature extraction methods could be executed
without using all the memory. The same could be said about the classifier.
However, Random Forest is very source consuming, and it’s performance is
limited to the amount of trees that computer’s memory allows to grow. We
have compared the time requirements of all the feature extraction methods.
The classifiers, on the other hand, were built and executed with di�erent
software, so a time comparison is not applicable. The following two subsections
describe the results obtained, each corresponding to one of the two questions
raised earlier in the section 4.

5.1 Results of LICA using Extreme Learning Machines

Tests covered dimensionality reduction up to 86, 107, 32 and 21 components
for databases DB 1, DB 2, DB 3 and DB 4 respectively. Expanding that dimen-
sionality did not show a significant increase in the hit-rate of the algorithms.
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Figure : Rows: Instances of 5 basis from ICA Infomax, ICA Molguey &
Schuster, LICA, PCA
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Face recognition results
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Figure 6. Recognition rate on DB 4 (347 subjects).
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Figure 7. Recognition rate on DB 3 (832 subjects).

tried other algorithms like Nive-Bayes, Multinomial Nive-Bayes, Radial Ba-
sis Function Networks or Multilayer Perceptrons over DB 1. These classifiers
threw two possible outcomes -unfeasible execution time or a recognition rate
below 0.10. Consequently, they were discarded from further testing.
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tried other algorithms like Nive-Bayes, Multinomial Nive-Bayes, Radial Ba-
sis Function Networks or Multilayer Perceptrons over DB 1. These classifiers
threw two possible outcomes -unfeasible execution time or a recognition rate
below 0.10. Consequently, they were discarded from further testing.
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Figure : face recognition results on databases of increasing size
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Figure 8. Recognition rate on DB 2 (3249 subjects).

DB 4 DB 3 DB 2 DB 1

ELM [45] 0.7093 0.8782 0.5834 0.4735

Random Forest [42] 0.7719 0.7506 0.3457 0.2431

� � SVM [43] 0.8713 0.8509 0.3572 0.2111

Table 2
Maximum testing accuracy for 4 FERET database subsets using LICA feature ex-
traction algorithm.

The figure number 10 illustrates the obtained results. Random Forest and
� � SVM obtain decreasingly worse results when the size of the database in-
creases. When testing the two small databases, � � SVM is more solid than
Random Forest. It is interesting that ELM retrieves the worst result in the
DB 4 case but the best one in DB 3 case. Introducing more classes and sam-
ples while maintaining the samples per class ratio significantly enhances ELMs
ability to classify. The experiments with DB 2 and DB 1 represent a big rise
on complexity and database size. ELM is the algorithm that best deals un-
der these circumstances. Specially in the DB 1 scenario, where it doubles the
other algorithm’s recognition rate. We tested all three methods using di�erent
software tools. Thus, we can’t o�er an exact run time comparison. However,
we can assert that ELM’s total time of training and testing was several mag-
nitudes smaller.
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Figure 9. Recognition rate on DB 1 (5169 subjects).
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Figure 10. Recognition rate on the 4 databases using ELM, Randon Forest and
� � SVM and features extracted with LICA.
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Figure : face recognition results cont.
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Fusion of features

The 2nd experiment performs the fusion of features obtained
by LICA and linear algorithms4

Classification by ELM
Four different databases tested
Conclusion: LICA-fusion enhances the linear features

4Ion Marques, Manuel Graña Fusion of lattice independent and linear
features improving face identification. Neurocomputing 114:80–85 (2013)
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Fusion pipeline




























 













Figure 1: Flow diagram of the feature extraction and fusion process. We perform
a linear feature extraction process (either PCA or LDA) over the whole input
data. Concurrently, we extract class conditional endmembers and abundances.
The last step performs feature fusion merging selected features computed in one
or other process.

Xc =
�

xc
j 2 X ; j = 1, . . . , M

 

2 RM�N , (3)

where M is the number of face image samples belonging to that class. For
each class c we compute a set of class conditional endmembers Lc applying an
endmember induction algorithm (EIA), as described on section 2, to the class
restricted dataset Xc . We can not reproduce the description of the EIA used in
the experiments [6, 7] for lack of space. Its noise-related � parameter controls
to what extent an endmember candidate can be regarded as different to an
already chosen endmember. The number of induced endmembers will depend
on the dataset and can be different for each subset within the same data base.
They are used to calculate the abundance matrix of each class restricted dataset
by straightforward unconstrained least squares (# denotes the matrix pseudo-
inverse)

Ac = (Lc)# XcT , (4)

where Ac = {ac
i ; i = 1, . . . , M} 2 RMc�M are the class restricted abundance

coefficients, and Mc the number of endmembers found for this class. On the
other hand, the whole data set X is used to compute a mixing matrix W ap-
plying a linear feature extraction algorithms, such as PCA [2], 2DPCA [14],
2D2PCA [15], kernel PCA [16] or LDA [17]. The data features obtained by
linear projection are given by

Y = WXT (5)

where Y = {yc
i ; i = 1, . . . , n; c 2 {1, 2, . . . , C}} 2 Rd�n is the feature matrix,

when each face image is transformed into a feature vector yc
i of dimensionality d.

The final feature fusion step involves substituting the first linear features from
Y with the corresponding abundances in Y c. Formally, the new i-th feature
vector zc

i 2 Rd of a face of class c is defined as

zc
i = ac

j(i)k
⇥

yc
i,Mc+1, . . . , y

c
i,d

⇤

, (6)

4

Figure : Pipeline of LICA and linear feature fusion
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Feature fusion

Dataset matrix X :
X = {xc

i

; i = 1, . . . , n; c 2 {1, 2, . . . , C}} 2 Rn⇥N ,

Dataset class restricted c :
X

c =
n

x

c

j

2 X ; j = 1, . . . , M
o

2 RM⇥N ,

class restricted abundance matrix: A

c = (E c)# X

cT ,

Data features obtained by linear algorithm Y = �X

T

Manuel Graña Lattice Computing: applications



Introduction
Lattice Associative Memories

Applications
Concluding remarks

Face Recognition
Diffusion MRI data classification
Multivariate Mathematical Morphology
Resting state fMRI processing
Spectral-Spatial classification

Feature fusion (cont.)

Class restricted abundance coefficients
A

c = {ac

i

; i = 1, . . . , M} 2 RMc⇥M

Linear feature matrix
Y = {yc

i

; i = 1, . . . , n; c 2 {1, 2, . . . , C}} 2 Rd⇥n

Fused i-th feature vector z

c

i

2 Rd of a face of class c is

z

c

i

= a

c

j(i)k
⇥

y

c

i ,Mc+1, . . . , y
c

i ,d

⇤

, (2)
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Face databases

Table : Summary characteristics of the experimental databases.

Name Number Number Variations
of images of subjects

AT&T Database 400 40 Pose, expression, light⇤

of Faces
MUCT Face 3755 276 Pose, expression, light
Database

PICS (Stirling) 312 36 Pose, expression
Yale Face 165 15 Expression, light, glasses
Database
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Face feature fusion results
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Figure : Recognition rate using ELM classifier for the AT&T database.
Dotted lines correspond to standard feature extraction methods. Solid
lines correspond to feature fusion approach.
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Face feature fusion results (cont.)
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Figure : Recognition rate using ELM classifier for the MUCT database.
Dotted lines correspond to standard feature extraction methods. Solid
lines correspond to feature fusion approach.
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Face feature fusion results (cont.)
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Figure : Recognition rate using ELM classifier for the PICS database.
Dotted lines correspond to standard feature extraction methods. Solid
lines correspond to feature fusion approach.
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Face feature fusion results (cont.)

0 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionality

H
it−

ra
te

 

 

PCA
2DPCA
2D2PCA
kernel PCA
PCA+LDA
2DPCA+LDA
2D2PCA+LDA

Figure : Recognition rate using ELM classifier for the Yalefaces database.
Dotted lines correspond to standard feature extraction methods. Solid
lines correspond feature fusion.
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Diffussion MRI data classification

Discrimination of Alzheimer’s disease (AD) patients from
diffussion MRI data 5

Database collected by collaborating clinicians at Hospital
Santiago, Vitoria
Classification by SVM, RVM, 1-NN
LICA residuals are used for feature selection

localization of voxel sites for classification with clinical
significance
classification performance

5M. Termenon, M. Graña, A. Besga, J. Echeveste, A. Gonzalez-Pinto,
Lattice Independent Component Analysis feature selection on Diffusion
Weighted Imaging for Alzheimer’s Disease Classification, Neurocomputing
114:132–141 (2013)
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DWI, DTI and FA, MD

Diffusion Weighted Imaging (DWI) measures the diffusion of
water molecules inside the brain along several directions

in vivo information about the integrity of the White Matter
(WM) fibers.

Diffusion Tensor Imaging (DTI) is the diffusion covariance
tensor at each voxel.
Scalar diffusion measures computed from DTI are

Fractional Anisotropy (FA) privileged diffusion direction
Mean Diffusivity (MD), magnitude of the diffusion process

DTI studies about WM abnormalities in AD have found
differences between AD patients and controls
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Preprocessing pipeline

Algorithm 1 T1 and DWI data processing pipeline to obtain spatially normal-
ized FA data.

1. Convert DICOM to nifti
2. Skull stripping T1-weighted volumes
3. Affine registration of T1-weighted skull stripped volumes to template

MNI152.
4. Correct DWI scans.
5. Obtain skull stripped brain masks for each DWI corrected scans.
6. Apply diffusion tensor analysis computing DTI and FA.
7. Rigid registration 6DoF of FA data to T1-weighted normalized volumes,

from Step3.

where I is the actual imaging data, A is the matrix of fractional abundance
coefficients, S is the matrix composed of the lattice independent sources, and
✏ is a noise term. Given the imaging data and the lattice independent sources,
the abundance matrix can be obtained by least squares unmixing (LSU)

Â = IS#,

where S# is the Moore-Penrose pseudoinverse, or by a fully constrained LSU
(FCLSU) ensuring that the abundance coefficients are positive and add up to
1. The residual error (R) is the squared difference between the actual imaging
data and the reconstruction using the estimated abundance matrix:

R = (I � ÂS)2. (3)

Lattice independent sources can be induced from the data by the endmember
induction algorithms (EIA) [25, 26], which can be lattice computing approaches
[27]. LICA is composed of a non-linear process of lattice independent source
induction from the data and a linear unmixing of the data using either LSU
or FCLSU. In this paper, we obtain the sources using the Incremental Lattice
Source Induction Algorithm (ILSIA) [24], and we compute the abundances ap-
plying FCLSU. Therefore, the approach is a mixture of linear and nonlinear
methods (Algorithm public implementations are available3).

In this experiment, we compute LICA across FA volumes. The imaging data
are reshaped as a matrix I 2 Rd3N , where N is the number of subjects and,
without lack of generality, d is the volume dimension in each axis for a single
FA volume. Suppose that we induce n sources from the data, so that S 2 RnN ,
then the abundance matrix is A 2 Rd3n. The abundance matrix corresponds to
some kind of dimension reduction from the original data, if n � N . In Figure 1,
we show the reconstructed volume and the residual error for several FA volumes.

3http://www.ehu.es/ccwintco/index.php/Endmember_Induction_Algorithms_
%28EIAs%29_for_MATLAB_and_SCILAB

5
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LICA for feature detection in FA

Linear Mixing Model X = AS + ✏,

S extracted by an EIA from the set of FA volumes
Abundance estimation by LSU Â = XS

#, or FCLSU
Residual error R = (X � ÂS)2.

P (i , j , k) Pearson’s correlation of R (i , j , k) with the
categorical variable (AD=1, HC=0)

Feature sites |P (i , j , k)| > P↵

where P↵ is the ↵-percentile of the e.p.d. of P (i , j , k)
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LICA for feature detection in FA

(a)

(b)

(c)

Figure 1: Axial slices from three healthy controls and three AD patients. (a) original FA
volumes, (b) reconstructed volumes obtained computing the source mixing using the FLSU
estimated abundance images ÂS and (c) residual error after the unmixing-mixing process
obtained computing eq. (3).

7

Figure : (a) original FA data, (b) reconstruction from FCLSU estimated
abundances, (c) residual R
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Feature localization

(a)

(b)

(c)

Figure 2: Voxel sites for FA features selected with a 99,50% percentile on the Pearson’s cor-
relation empirical distribution computed on (a) the original FA data, (b) the LICA residuals,
(c) voxel based morphometry computed on the original FA data

11

(a)

(b)

(c)

Figure 2: Voxel sites for FA features selected with a 99,50% percentile on the Pearson’s cor-
relation empirical distribution computed on (a) the original FA data, (b) the LICA residuals,
(c) voxel based morphometry computed on the original FA data
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(b)

(c)

Figure 2: Voxel sites for FA features selected with a 99,50% percentile on the Pearson’s cor-
relation empirical distribution computed on (a) the original FA data, (b) the LICA residuals,
(c) voxel based morphometry computed on the original FA data
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Figure : Feature localization in the brain (a) LICA residual, (b) bare FA
data, (c) VBM
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Feature localization

LICA residuals produce feature localization that correspond to
biomarkers in the limbic system in agreement with the medical
literature,

hippocampus,
amygdala , and
the brainstem.
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DWI Classification results

Figure 3: Average classification accuracy for features extracted from the FA data (I) and
features extracted from the LICA residual (R) for varying percentiles on the Pearson’s corre-
lation empirical distribution. In red, SVM classification results. In blue, 1NN classification
results. In green, RVM classification results.

Figure 4: Average classification sensitivity for features extracted from the FA data (I) and
features extracted from the LICA residual (R) for varying percentiles on the Pearson’s corre-
lation empirical distribution. In red, SVM classification results. In blue, 1NN classification
results. In green, RVM classification results.

13

Figure : LICA residual R vs. bare FA, accuracy results for decreasing P↵

increasing number of features
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DWI Classification results

Figure 5: Average classification specificity for features extracted from the FA data (I) and
features extracted from the LICA residual (R) for varying percentiles on the Pearson’s corre-
lation empirical distribution. In red, SVM classification results. In blue, 1NN classification
results. In green, RVM classification results.

Figure 6: Average classification accuracy for features extracted from the VBM methodology
(V BM) and features extracted from the LICA residual (R) for varying percentiles on the
Pearson’s correlation empirical distribution. In red, SVM classification results. In blue, 1NN
classification results. In green, RVM classification results.

14

Figure : LICA residual R vs. VBM, accuracy results for decreasing P↵

increasing number of features
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Multivariate Mathematival Morphology

Morphological operations are mappings between complete lattices,
denoted L or M,

erosion is a mapping " : L ! M conmuting with the infimum
operation, " (

V

Y ) =
V

y2Y

" (y); 8Y ✓ L
dilation is a mapping � : L ! M conmuting with the

supremum operation, � (
W

Y ) =
W

y2Y

� (y).
high dimensional vectors have no natural total order
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Multivariate ordering

Definition
A h-ordering is defined by a surjective map of the original partially
ordered set onto a complete lattice h : X ! L ,

The order in L induces a total order in X ,

r 
h

r

0 , h (r)  h

�

r

0� (3)

Definition
Supervised h-ordering the mapping is built by supervised
classification

satisfying h (b) = ?, 8b 2 B, and h (f ) = >, 8f 2 F ,
for background and foreground B, F ⇢ X , B \ F = ;,

? and > are the bottom and top elements of L
Manuel Graña Lattice Computing: applications



Introduction
Lattice Associative Memories

Applications
Concluding remarks

Face Recognition
Diffusion MRI data classification
Multivariate Mathematical Morphology
Resting state fMRI processing
Spectral-Spatial classification

Supervised erosion and dilation

Definition
The supervised h-erosion by structural object S is

"
h,S (I ) (p) = I (q) s.t. I (q) =

^

h

{I (s) ; s 2 S

p

}

Definition
The supervised h-dilation by structural object S is

�
h,S (I ) (p) = I (q) s.t. I (q) =

_

h

{I (s) ; s 2 S

p

}

where
V

h

and
W

h

are the infimum and supremum defined by the
reduced ordering 

h
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LAAM h-function

Definition

Given c 2 Rn and X = {x
i

}K

i=1, x

i

2 Rn ; the LAAM based
h

X

-function is
h

X

(c) = ⇣
⇣

x

#, c
⌘

, (4)

x

# 2 Rn is a LAAM recall result

x

# = M

xx

⇤̂ c

or
x

# = W

xx

_⇤ c

⇣ (a,b) is the Chebyshev distance ⇣ (a,b) =
W

i

|a
i

� b

i

|.
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One-side ordering

Definition
one-side LAAM-supervised ordering:

8x, y 2 Rn, x 
X

y () h

X

(x)  h

X

(y) . (5)

h

X

: Rn ! L
X

, where L
X

=
�

R+
0 , <

�

, ?
X

= 0
the Background set B s.t. h

X

(b) =?
X

= 0
is the set of fixed points of the LAAM B = F (X )
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B/F ordering

Definition
The relative background/foreground supervised LAAM h-function:

h

r

(c) = h

F

(c) � h

B

(c) , (6)

Given training sets B and F

Definition
relative LAAM-supervised ordering denoted 

r

:

8x, y 2 Rn, x 
r

y () h

r

(x)  h

r

(y) (7)
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B/F ordering

h

r

(c) : Rn ! L
B/F

where L
B/F

= (R, <),
hr (b) > 0; b 2 F (B)
hr (f) < 0; f 2 F (F )
no bottom or top elements
hr (c) = 0; decision boundary c 2 Cr
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Resting state fMRI

Resting state fMRI data has been used to study brain
functional connectivity

correlation of low frequency oscillations in diverse areas of the
brain reveal functional resting networks.
connections discovered provide a brain fingerprint,

default-mode network: Doing nothing network

Not imposing constraints on subject cognitive abilities.
Example: in the study of brain maturation there is no single
cognitive task which is appropriate across the aging population.
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Schizophrenia

Schizophrenia is a severe psychiatric disease that is characterized
by delusions and hallucinations, loss of emotion and
disrupted thinking.

Functional disconnection between brain regions is suspected to
cause these symptoms, because of known aberrant
effects on gray and white matter in brain regions that
overlap with the default mode network.

Resting state fMRI studies have indicated aberrant default
mode functional connectivity in schizophrenic
patients.
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Auditory Hallucinations

Goal of our work6 is to find differences in connectivity
betwee patients with and without auditory
hallucinations.

Classification provides the detection power value of the
connectivity features extracted

Features have biological meaning and anatomical
correspondence

6D. Chyzhyk, M Graña, D Öngür, AK Shinn, Discrimination of
Schizophrenia Auditory Hallucinators by Machine Learning of resting-state
Funcitonal MRI, International Journal of Neural Systems (online first)
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Experiment goal

experiments provide a proof of concept of LAAM multivariate
morphology approach for functional connectivity

finding discriminating features of healthy

control subjects, schizophrenia patients with

and without auditory hallucinations.

comparison with activity based features: regional homogeneity
(ReHo), fractional amplitude of low frequency
fluctuations (fALFF)
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Experiment layout

1 Compute both h

X

and h

B/F

maps related to the key seed
region

2 Select most salient voxel sites to extract features
3 Crossvalidation classification experiments == detection power
4 Localization of features

1 network effect related to the auditory hallucinations.
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Materials

68 men and women, ages 18-65 years, divided in three groups:
(i) SZAH: 26 schizophrenia patients with a history of AH,
(ii) SZNAH: 14 schizophrenia patients without a history of
AH, and
(iii) HC: 28 healthy control subjects.
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Preprocessing

fMRI: 240 BOLD volumes and one anatomical T1-weighted
per subject

skull extraction
manually AC-PC transformed.
The functional images coregistered to the T1-weighted
anatomical image.
slice timing,
head motion correction
smoothing (FWHM=4mm)
spatial normalization to (MNI) template
temporal filtering (0.01-0.08 Hz)
linear trend removing
All the subjects have less than 1mm maximum displacement
and less than 1º of angular motion.
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Seed regions for connectivity

Figure : The ROIs used for lattice auto-associative memory (LAAM)
based connectivity analysis. Left and right Heschl’s gyrii foregrounds,
ventricle background.
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Classification results

Table : Average accuracy of cross-validation results, feature vector size
per columns.

Measure Feat.Map. HG 500 1000 5000 10000

SZAH vs. SZNAH

Func. Conn.

OS-LAAM
L 97.5 97.5 97.5 92.5

R 92.5 92.5 95 95.2

BF-LAAM
L 100 97.5 95 90

R 100 100 100 100

Local Act.

ReHo - 100 100 100 100

ALFF - 85 87.5 92.5 92.5

fALFF - 97.5 100 100 97.5
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Localizations of the features

January
8,2015

0:29
IJN

S-2015-01-08_
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Table 4. Cortical brain regions of the feature voxel sites corresponding to BF-LAAM h-map feature vector of size 1000, for the
classification of SZAH vs. SZNAH. Regions highlighted in bold typeface have also been reported in81. CS = Cluster size. H=Brain
Hemisphere, L=Left, R=Right.

BF-LAAM LHG Coordinates BF-LAAM RHG Coordinates
Region H CS x y z Region H CS x y z

Middle Frontal Gyrus L 10 -36 33 45 Frontal Pole L/R 7/11 -15/6 60/69 -18/-9
Inferior Frontal Gyrus L 10 -60 18 -3 Superior Frontal Gyrus L 5 -3 36 48

Middle Temporal Gyrus L 33 -57 -6 -27 Superior Temporal Gyrus L 5 -72 -24 6
Temporal Pole R 11 30 27 -36 Postcentral Gyrus L 7 -45 -33 63

Precentral Gyrus L 10 -21 -24 63 Juxtapositional Lobule Cortex 8 0 9 66
Parahippocampal Gyrus R 15 27 -24 -15 Angular Gyrus R 5 51 -54 48

Cingulate Gyrus R 5 6 -33 18
Lateral Occipital Cortex R 6 42 -63 45
Occipital Fusiform Gyrus L 5 -36 -75 -9
Parahippocampal Gyrus L 21 -21 -12 -21
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Some comments on the results

Functional connectivity and local activity have similar
discrimination power

Localizations do not overlap == different biological
interpretations

LAAM-based functional connectivity achieved similar detection
power for LHG and RHG

conventional approaches did not report detections from RHG
connectivity

Findings fit into postulatd models for hallucinations
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Hyperspectral image spectral-spatial classification

Independent SVM spectral classification per pixel
Multivariate mathematical morphology provide the spatial
information

Watershed regions from morphological gradient
assume homogeneous class inside each region

Spatial correction of SVM results
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Hyperspectral image and baseline SVM classification

4

8x 2 I, ga (x) =

�

�

�

�

�

hB (� (x)) � hB (" (x)) if � (x) , " (x) 2 B

hF (" (x)) � hF (� (x)) if � (x) , " (x) 2 F

hF (� (x)) � hB (" (x)) + hB (� (x)) � hF (" (x)) otherwise
(10)

A. Methodology
Experimental design : First, a spectral classification by

SVM (multi-class, one-versus-all) is performed on the hyper-
spectral image obtaining the baseline thematic map. Second, a
watershed transform is computed on the hyperspectral image
giving an image segmentation into watershed regions. Third,
watershed segmentation is combined with the baseline spectral
SVM thematic map applying one of the two techniques
proposed in [14], so-called WHEDS and NWHEDS. In both
techniques, the majority class within each watershed region is
computed, and pixels inside it are assigned to this majority
class. For the boundary pixels defining the region watersheds,
WHEDS assigns them to the neighboring watershed region
with the closest median value; while NWHEDS keeps the class
assigned by the spectral SVM classification. We have obtained
results using the three proposed LAAM h-supervised orderings
and a component-wise ordering to compute Beucher gradients
and ensuing watershed segmentations.

Software: Computational experiments use the LIBSVM
library1 implementation of SVM to perform the multi-class
(one versus all) spectral classification with a Radial Basis
Function (RBF) kernel. A 5-fold cross-validation has been
applied to select the model parameters C and �. The EIA
used to build the training sets for the LAAM h-supervised or-
derings is the ILSIA algorithm2 [37]. The MATLAB standard
implementation of the watershed algorithm [40] was used in
all the experiments.

Performance indices: Classification performance is mea-
sured by the following performance indices [41]: (a) The
overall accuracy (OA): OA =

�C
i=1 ni

N , (b) the average
accuracy (AA) AA =

PC
i=1

ni
Ni

, and (c) the Kappa coefficient,
 =

N
�

k tkk�
�

k tk+t+k

N2�
�

k tk+t+k
, as well as the class-specific sensi-

tivity and specificity. In these expressions, ni is the number
of samples of class i correctly classified, Ni is the total
number of samples of class i, C is the number of classes,
and N is the total number of samples, s.t.

PC
i Ni = N , tij

denotes an element of the confusion matrix, ti+ =
P

j tij and
t+j =

P

i tij .

B. Pavia University
1) Dataset and baseline spectral classification: The Pavia

University hyperspectral image was taken by the ROSIS-03
sensor over the facilities of the University of Pavia in Italy.
The hyperspectral data has been provided by Prof. Paolo
Gamba from the Telecommunications and Remote Sensing
Laboratory, Pavia University (Italy) [42]. After discarding
pixels with no information and noisy spectral bands, the image
has a spatial size of 610⇥ 340 pixels with a spatial resolution

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2http://www.ehu.es/ccwintco/index.php/GIC-source-code-free-libre

(a) (b) (c)
Figure 1. Pavia University hyperspectral image captured by ROSIS-03 sensor
(a) false color scene (bands 80, 90 and 70). (b) Available ground-truth. (c)
Baseline thematic map obtained from spectral classification by SVM.

of 1.3m per pixel, and 103 spectral bands comprised in the
range of 430 � 860 nm. Figures 1(a) and 1(b) show the
hyperspectral scene in false color and its available ground-
truth. SVM training set is composed of 200 pixel samples
per class, obtained by random sampling without replacement,
so that the training data is well balanced. Figure 1(c) shows
the baseline thematic map obtained by the spectral SVM
classification. The overall accuracy is OA=88.97% and the
average accuracy is AA=91.60%, computed over the thematic
map test pixel not used for training.

2) Watershed segmentation: Figure 2 shows the set of
endmembers E = {ei}5

i=1 induced by ILSIA from the Pavia
hyperspectral image, which are used to build the training
sets of the LAAM h-supervised orderings. For the one-side
LAAM h-supervised ordering we define X = {e4}. For the
absolute and relative LAAM h-supervised orderings we define
F = {e1} and B = {e2}. Figure 3 shows the corresponding
h-function mappings computed applying Eq. (5) using these
X , F and B, blue color corresponds to smaller values and
red color to greater values. The Beucher gradients computed
from the morphological gradients computed on erosions and
dilations using a disk shaped structural element of increasing
radius (r 2 {1, 3, 5}) for the three proposed LAAM h-
supervised orderings and the component-wise ordering are
shown in Fig. 4. It can be appreciated that the blurring of
the boundaries in the image as the radius of the structural
element increases is less strong for the background/foreground
LAAM h-supervised orderings, this effect is most evident
for the highest radius value. Corresponding watershed seg-
mentations are shown in Fig. 5, where dark lines correspond
to watershed boundaries between regions. Columns in these
figures correspond to the component-wise ordering (CW), one-
sided LAAMX , absolute LAAMa, and relative LAAMr h-
supervised orderings. Rows correspond to increasing radius of
the structural element.

3) Spatial-spectral classification results: Figs. 6 and 7
show the spectral-spatial classification results on the Uni-
versity of Pavia hyperspectral image. A visual comparison
with Fig. 1(c) allows to appreciate that both NWHEDS and
WHEDS approaches produce improvements relative to the

Figure : (a) Pavia image, (b) ground truth, (c) pixelwise SVM
classification
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Supervised morphological gradient

Definition
The h-supervised morphological gradient:

g

h,S (I ) = h

�

�
h,S (I )

�

� h

�

"
h,S (I )

�

,

where "
h,S (I ) and �

h,S (I ) are the h-supervised erosion and dilation
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Unsupervised selection of LAAM training data

An EIA induces a set of endmembers E = {e
i

}p

i=1. Compute
D = [d

i ,j ]
p

i ,j=1, where d

ij

= |e
i

, e
j

|
One-side h-supervised ordering

X = {ek⇤ 2 E} such that k

⇤ = arg mink

n

1
p�1

P

i 6=k dik

op

i=1
.

Background/Foreground h-supervised orderings
F = {ei⇤ 2 E} and B = {ej⇤ 2 E} such that
(i⇤, j⇤) = arg maxi,j {(dij)}

Manuel Graña Lattice Computing: applications



Introduction
Lattice Associative Memories

Applications
Concluding remarks

Face Recognition
Diffusion MRI data classification
Multivariate Mathematical Morphology
Resting state fMRI processing
Spectral-Spatial classification

Endmembers
5

Figure 2. Endmembers induced by ILSIA algorithm from the Pavia
University hyperspectral image.

(a) (b) (c)
Figure 3. h-function mappings computed using training sets: (a) X = {e4},
(b) F = {e1}, (c) B = {e2}. Blue color corresponds to smaller values and
red color to greater values.

CW LAAMX LAAMa LAAMr

(a)

(b)

(c)
Figure 4. Beucher morphological gradients computed on the Pavia University
hyperspectral image using the component-wise ordering (CW), one-sided
LAAMX , absolute LAAMa, and relative LAAMr h-supervised orderings.
Rows correspond to increasing radius of the disk shaped structural element
with : (a) r = 1, (b) r = 3, (c) r = 5.

CW LAAMX LAAMa LAAMr

(a)

(b)

(c)
Figure 5. Watershed segmentations computed on the Pavia University
hyperspectral image using the component-wise ordering (CW), one-sided
LAAMX , absolute LAAMa, and relative LAAMr h-supervised orderings.
Rows correspond to increasing radius of the disk shaped structural element
with : (a) r = 1, (b) r = 3, (c) r = 5.

baseline thematic map.
The quantitative evaluation of the classification performance

is given in Tables I, II, and III showing the OA, AA and
Kappa values obtained from the baseline thematic map, and
the ones obtained with spectral-spatial classification using
morphological operators with structural elements of radius 1, 3
and 5, respectively. There is a systematic performance increase
of all the spectral-spatial classification approaches relative
to the baseline spectral SVM. Also, it can be appreciated
a systematic improvement from SVM-NWHEDS relative to
SVM-WHEDS regardless of the ordering or structural element
size used. The performance of the SVM-NWHEDS and SVM-
WHEDS classification has not significant differences between
the component-wise ordering and the proposed LAAM h-
supervised orderings with the unsupervised selection of train-
ing sets. Figures 8 and 9 show respectively the class-specific
sensitivity and specificity computed on the confusion matrices
of the the baseline spectral SVM, the SVM-NWHEDS and the
SVM-WHEDS spectral-spatial classification, for all orderings
considered and a disk shaped structural element with radius 3.
The performance increase introduced by the spectral-spatial
algorithms is evident in almost all the classes, except those
with sensitivity or specificity values close to 100%, in the
range 97-99%.

C. Indian Pines
1) Dataset and baseline spectral classification: The In-

dian Pines hyperspectral image was obtained by the airborne
AVIRIS sensor flying over North-western Indiana. It consists
of 145 ⇥ 145 pixels and 224 spectral reflectance bands in the
wavelength range 0.4–2.5µm. The spatial resolution is low,
and the land covers are two-thirds agriculture crop lands and
one-third forest or other natural perennial vegetation. There
are two major dual lane highways, a railway line, as well as

Figure : Endmembers found in the hyperspectral image
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Morphological gradient results

5

Figure 2. Endmembers induced by ILSIA algorithm from the Pavia
University hyperspectral image.

(a) (b) (c)
Figure 3. h-function mappings computed using training sets: (a) X = {e4},
(b) F = {e1}, (c) B = {e2}. Blue color corresponds to smaller values and
red color to greater values.

CW LAAMX LAAMa LAAMr

(a)

(b)

(c)
Figure 4. Beucher morphological gradients computed on the Pavia University
hyperspectral image using the component-wise ordering (CW), one-sided
LAAMX , absolute LAAMa, and relative LAAMr h-supervised orderings.
Rows correspond to increasing radius of the disk shaped structural element
with : (a) r = 1, (b) r = 3, (c) r = 5.

CW LAAMX LAAMa LAAMr

(a)

(b)

(c)
Figure 5. Watershed segmentations computed on the Pavia University
hyperspectral image using the component-wise ordering (CW), one-sided
LAAMX , absolute LAAMa, and relative LAAMr h-supervised orderings.
Rows correspond to increasing radius of the disk shaped structural element
with : (a) r = 1, (b) r = 3, (c) r = 5.

baseline thematic map.
The quantitative evaluation of the classification performance

is given in Tables I, II, and III showing the OA, AA and
Kappa values obtained from the baseline thematic map, and
the ones obtained with spectral-spatial classification using
morphological operators with structural elements of radius 1, 3
and 5, respectively. There is a systematic performance increase
of all the spectral-spatial classification approaches relative
to the baseline spectral SVM. Also, it can be appreciated
a systematic improvement from SVM-NWHEDS relative to
SVM-WHEDS regardless of the ordering or structural element
size used. The performance of the SVM-NWHEDS and SVM-
WHEDS classification has not significant differences between
the component-wise ordering and the proposed LAAM h-
supervised orderings with the unsupervised selection of train-
ing sets. Figures 8 and 9 show respectively the class-specific
sensitivity and specificity computed on the confusion matrices
of the the baseline spectral SVM, the SVM-NWHEDS and the
SVM-WHEDS spectral-spatial classification, for all orderings
considered and a disk shaped structural element with radius 3.
The performance increase introduced by the spectral-spatial
algorithms is evident in almost all the classes, except those
with sensitivity or specificity values close to 100%, in the
range 97-99%.

C. Indian Pines
1) Dataset and baseline spectral classification: The In-

dian Pines hyperspectral image was obtained by the airborne
AVIRIS sensor flying over North-western Indiana. It consists
of 145 ⇥ 145 pixels and 224 spectral reflectance bands in the
wavelength range 0.4–2.5µm. The spatial resolution is low,
and the land covers are two-thirds agriculture crop lands and
one-third forest or other natural perennial vegetation. There
are two major dual lane highways, a railway line, as well as

Figure : Morphological gradients with increasing structural element size
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Classification results

6

CW LAAMX LAAMa LAAMr

(a)

(b)

(c)
Figure 6. SVM-NWHEDS spectral-spatial classification maps computed on
the Pavia University hyperspectral image using the watershed segmentations
obtained the component-wise ordering (CW), one-sided LAAMX , absolute
LAAMa, and relative LAAMr h-supervised orderings. Rows correspond to
increasing radius of the disk shaped structural element with : (a) r = 1, (b)
r = 3, (c) r = 5.

CW LAAMX LAAMa LAAMr

(a)

(b)

(c)
Figure 7. SVM-WHEDS spectral-spatial classification maps computed on
the Pavia University hyperspectral image using the watershed segmentations
obtained the component-wise ordering (CW), one-sided LAAMX , absolute
LAAMa, and relative LAAMr h-supervised orderings. Rows correspond to
increasing radius of the disk shaped structural element with : (a) r = 1, (b)
r = 3, (c) r = 5.

some low density housing, other built structures, and smaller
roads. Since the scene is taken in June, some of the crops
(corn, soybean) are in early growth stages with less than 5%
ground coverage. The available ground truth labels the pixels
into sixteen classes with variable number of samples for each
class. We have reduced the number of bands to 200 removing
bands on the spectral region of water absorption: [104 � 108],
[150 � 163], 220. Indian Pines image is available from Pur-

Method OA AA �

Pixel-wise SVM 88.97 91.60 0.8565
SVM + NWHED CW 91.42 93.73 0.8880

LAAMX 90.91 93.16 0.8815
LAAMa 91.09 93.32 0.8838
LAAMr 90.81 92.90 0.8801

SVM+WHED CW 94.46 96.33 0.9274
LAAMX 93.40 95.27 0.9136
LAAMa 93.99 95.78 0.9213
LAAMr 93.77 95.46 0.9184

Table I
CLASSIFICATION RESULTS OF THE PAVIA UNIVERSITY HYPERSPECTRAL

IMAGE: OA, AA, AND KAPPA (�) VALUES. MORPHOLOGICAL
STRUCTURAL ELEMENT DISC SHAPED OF RADIUS r = 1.

Method OA AA �

Pixel-wise SVM 88.97 91.60 0.8565
SVM + NWHED CW 92.87 94.83 0.9068

LAAMX 92.70 94.43 0.9045
LAAMa 92.81 94.46 0.9059
LAAMr 91.93 93.62 0.8944

SVM+WHED CW 94.71 95.99 0.9306
LAAMX 94.90 96.27 0.9331
LAAMa 94.87 96.14 0.9326
LAAMr 94.69 95.83 0.9303

Table II
CLASSIFICATION RESULTS OF THE PAVIA UNIVERSITY HYPERSPECTRAL

IMAGE: OA, AA, AND KAPPA (�) VALUES. MORPHOLOGICAL
STRUCTURAL ELEMENT DISC SHAPED OF RADIUS r = 3.

Method OA AA �

Pixel-wise SVM 88.97 91.60 0.8565
SVM + NWHED CW 93.41 94.39 0.9135

LAAMX 93.65 94.72 0.9167
LAAMa 93.09 94.16 0.9096
LAAMr 92.61 93.84 0.9034

SVM+WHED CW 95.46 95.86 0.9403
LAAMX 95.27 96.11 0.9378
LAAMa 95.15 95.62 0.9364
LAAMr 94.91 95.71 0.9332

Table III
CLASSIFICATION RESULTS OF THE PAVIA UNIVERSITY HYPERSPECTRAL

IMAGE: OA, AA, AND KAPPA (�) VALUES. MORPHOLOGICAL
STRUCTURAL ELEMENT DISC SHAPED OF RADIUS r = 5.

Figure 8. Class-specific sensitivity results for the classification of the Pavia
University hyperspectral image. Morphological results have been obtained
using a disk shaped structural element of radius r = 3.

Figure : Classification results from watershed segmentations with
increasing structural element size
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Classification results

Method OA AA 

Pixel-wise SVM 88.97 91.60 0.8565
SVM + NWHED CW 93.41 94.39 0.9135

LAAM
X

93.65 94.72 0.9167
LAAM

r

92.61 93.84 0.9034
SVM+WHED CW 95.46 95.86 0.9403

LAAM
X

95.27 96.11 0.9378
LAAM

r

94.91 95.71 0.9332

Table : Classification results of the Pavia University hyperspectral image:
OA, AA, and Kappa () values. Morphological structural element disc
shaped of radius r = 5.
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Class specific sensitivities

6

CW LAAMX LAAMa LAAMr

(a)

(b)

(c)
Figure 6. SVM-NWHEDS spectral-spatial classification maps computed on
the Pavia University hyperspectral image using the watershed segmentations
obtained the component-wise ordering (CW), one-sided LAAMX , absolute
LAAMa, and relative LAAMr h-supervised orderings. Rows correspond to
increasing radius of the disk shaped structural element with : (a) r = 1, (b)
r = 3, (c) r = 5.

CW LAAMX LAAMa LAAMr

(a)

(b)

(c)
Figure 7. SVM-WHEDS spectral-spatial classification maps computed on
the Pavia University hyperspectral image using the watershed segmentations
obtained the component-wise ordering (CW), one-sided LAAMX , absolute
LAAMa, and relative LAAMr h-supervised orderings. Rows correspond to
increasing radius of the disk shaped structural element with : (a) r = 1, (b)
r = 3, (c) r = 5.

some low density housing, other built structures, and smaller
roads. Since the scene is taken in June, some of the crops
(corn, soybean) are in early growth stages with less than 5%
ground coverage. The available ground truth labels the pixels
into sixteen classes with variable number of samples for each
class. We have reduced the number of bands to 200 removing
bands on the spectral region of water absorption: [104 � 108],
[150 � 163], 220. Indian Pines image is available from Pur-

Method OA AA �

Pixel-wise SVM 88.97 91.60 0.8565
SVM + NWHED CW 91.42 93.73 0.8880

LAAMX 90.91 93.16 0.8815
LAAMa 91.09 93.32 0.8838
LAAMr 90.81 92.90 0.8801

SVM+WHED CW 94.46 96.33 0.9274
LAAMX 93.40 95.27 0.9136
LAAMa 93.99 95.78 0.9213
LAAMr 93.77 95.46 0.9184

Table I
CLASSIFICATION RESULTS OF THE PAVIA UNIVERSITY HYPERSPECTRAL

IMAGE: OA, AA, AND KAPPA (�) VALUES. MORPHOLOGICAL
STRUCTURAL ELEMENT DISC SHAPED OF RADIUS r = 1.

Method OA AA �

Pixel-wise SVM 88.97 91.60 0.8565
SVM + NWHED CW 92.87 94.83 0.9068

LAAMX 92.70 94.43 0.9045
LAAMa 92.81 94.46 0.9059
LAAMr 91.93 93.62 0.8944

SVM+WHED CW 94.71 95.99 0.9306
LAAMX 94.90 96.27 0.9331
LAAMa 94.87 96.14 0.9326
LAAMr 94.69 95.83 0.9303

Table II
CLASSIFICATION RESULTS OF THE PAVIA UNIVERSITY HYPERSPECTRAL

IMAGE: OA, AA, AND KAPPA (�) VALUES. MORPHOLOGICAL
STRUCTURAL ELEMENT DISC SHAPED OF RADIUS r = 3.

Method OA AA �

Pixel-wise SVM 88.97 91.60 0.8565
SVM + NWHED CW 93.41 94.39 0.9135

LAAMX 93.65 94.72 0.9167
LAAMa 93.09 94.16 0.9096
LAAMr 92.61 93.84 0.9034

SVM+WHED CW 95.46 95.86 0.9403
LAAMX 95.27 96.11 0.9378
LAAMa 95.15 95.62 0.9364
LAAMr 94.91 95.71 0.9332

Table III
CLASSIFICATION RESULTS OF THE PAVIA UNIVERSITY HYPERSPECTRAL

IMAGE: OA, AA, AND KAPPA (�) VALUES. MORPHOLOGICAL
STRUCTURAL ELEMENT DISC SHAPED OF RADIUS r = 5.

Figure 8. Class-specific sensitivity results for the classification of the Pavia
University hyperspectral image. Morphological results have been obtained
using a disk shaped structural element of radius r = 3.
Figure : Sensitivity per Class, structural element of radius 3
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Concluding remarks

Lattice Computing proposes a new paradigm for the definition
of Intelligent Systems algorithmms

does not involve statistical techniques, is model-free
relies mostly on lattice operators and lattice theory

I have concentrated on the LAAMs stream of research
Increasing range of practical applications with competitive
results
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Future work avenues

Sparse bayesian hyperspectral unmixing based on Ritter’s EIA
Multi-class Supervised Multivariate Mathematica Morphology
LICA fMRI group analysis for detection
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