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Multithreshold Linear Classification

Idea

Classification procedure:

Find the best projection w for the training set

Perform kernel density estimation for each class on the projected data

Classify samples based on the KDE values

I will focus on the first part of the problem as the other two are not as
computationally expensive.
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Practical Considerations

Find the best projection w for the training set
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where ip⇥(w) = ip⇥(JwTX�K, JwTX
+

K).
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Practical Considerations

Computational complexity

Computing ip⇥(w) is computationally expensive as it requires O(|X ||Y |)
steps.
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Practical Considerations

Approximations!

We investigated two approximations of ip⇥(·):
Sorting and Discarding - ignores pairs of points that are too far away
from each other as they don’t contribute much to the final value. The
maximum distance is determined dynamically for each w by the
approximation factor.

Binning - performs binning of the projected points, so that those
located near each other are approximated by their empirical mean.
The number of bins is determined dynamically for each w by the
approximation factor.

Both of them are parameterized by ✏, which bounds the absolute error
made by the algorithms vs ip⇥(·).
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Practical Considerations

Sorting and Discarding

ip
sort

⇥(w , ✏) =
1

p

2⇡V (w)|X ||Y |

X

x ,y : |x�y|<width(✏)

exp
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◆

Theorem

Using adaptive sorting and discarding with distance threshold in each
iteration of at least

q

max {0,�V (w) ln (2✏2⇡V (w))}

leads to the computation of the ip⇥ function with at most ✏ error.
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Practical Considerations
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sort
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The algorithm works best for sparse projections. It can be easily
implemented in O(n log n + |{x , y : |x � y | < width(✏)}|) time and linear
memory.
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Practical Considerations

Binning

ip
bin
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leads to the computation of the ip⇥ function with at most ✏ error.
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Practical Considerations

Binning

ip
bin
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The algorithm works best for dense projections. The time complexity is
quadratic in the number of bins.
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Practical Considerations
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Practical Considerations

Below are plots of the discarding threshold and bin width as the functions
of the acceptable error ✏.
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Practical Considerations

Optimization on the sphere

For better numerical stability, the optimization should be performed on the
sphere. By adding a custom regularization term we ”guide” the
optimization method to stay close to it.

Theorem

Given arbitrary sets X�,X+

⇢ Rd and corresponding
D
CS

(w) = D
CS

(JwTX�K, JwTX
+

K) function we have:

d := max
kwk=1

D
CS

(w) = max
w

D
CS

(w)� (kwk2 � 1)2

and

{w : kwk = 1 ^ D
CS

(w) = d} = {w : D
CS

(w)� (kwk2 � 1)2 = d}.
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Practical Considerations

Optimization on the sphere

The new objective function allows us to use optimization techniques that
are not designed to work on the sphere. In particular, we used L-BFGS and
Conjugate Gradients. We don’t need any additional hyperparameters to be
fitted.

Rafal Jozefowicz, Wojciech Czarnecki 19 February 2015 14 / 22



Experiments

We evaluated proposed approximations on 10 datasets from UCI and
libSVM’s repositories. Both D

CS

and its approximations are coded in
Python using numpy and scipy.
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Experiments

Mean ratio of exp calls between approximated technique and original
method during optimizations.

method CG L-BFGS-B

name bin dist bin dist
australian 0.11 0.44 0.11 0.45
breast-cancer 0.10 0.46 0.10 0.46
diabetes 0.21 0.56 0.22 0.54
fourclass 0.19 0.51 0.19 0.49
german.numer 0.15 0.47 0.19 0.46
heart 0.29 0.47 0.26 0.47
ionosphere 0.25 0.55 0.24 0.54
liver-disorders 0.29 0.65 0.31 0.67
sonar 0.32 0.53 0.29 0.50
splice 0.19 0.44 0.16 0.43
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Experiments

Sorting and Discarding - Results

Comparison of the cross validation BAC scores between given �
hyperparameter of D

CS

(x-axis), accepted error ✏ (y-axis). Positive values
(and corresponding red colors) represent decrease in BAC score while
negative values and corresponding blue colors – increase after using
approximated method.
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Experiments

Binning - Results

Comparison of the cross validation BAC scores between given �
hyperparameter of D

CS

(x-axis), accepted error ✏ (y-axis). Positive values
(and corresponding red colors) represent decrease in BAC score while
negative values and corresponding blue colors – increase after using
approximated method.
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Experiments

Number of optimization methods’ iterations.

method CG L-BFGS-B
name bin D

CS

dist bin D
CS

dist

australian 4 36 22 11 39 37
breast-cancer 4 35 8 6 39 14
diabetes 3 30 20 18 36 29
fourclass 4 12 10 6 15 14
german.numer 7 60 32 7 58 38
heart 3 40 19 12 34 20
ionosphere 5 600 216 18 384 152
liver-disorders 4 30 22 22 43 30
sonar 4 262 115 15 139 100
splice 4 92 26 14 65 41
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Experiments

Number of optimization methods’ iterations.

It’s important to note that the number of iterations is not equal to the
total number of evaluations of the function. It suggests, though, that when
using approximations, the problem becomes simpler than the baseline.
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Conclusions

Conclusions

1 We proposed two simple approximation schemes for faster
computation of MELC objective function and its gradient.

2 We showed how to e�ciently use existing o↵-the-shelf optimizers by a
simple change of the objective function while at the same time still
work near the unit sphere. Without the regularization term, the norm
of w tends to explode on some datasets and making it numerically
unstable.

3 Both algorithms significantly reduce the mean number of exp calls
while not sacrificing the resulting accuracy.

4 Our experiments suggest that the approximations act like some kind
of regularization of the classifier.
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Future Directions

Combining methods

The algorithms complement each other and it is easy to determine, which
will be faster for a given projection. This can further improve experimental
results and make it more applicable for larger datasets.
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