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Iris pattern recognition

Iris image segmentation.

Sometimes it is difficult.
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Iris image segmentation – quick look

The interesting regions of
the image:
the highest one which
corresponds to the pupil
and the region below
and around the pupil –
the iris region.
If we find them then the
iris is localized.

Image interpretation
and its consequences.

4 / 29



Outline

1 Motivation

2 Cross Entropy Clustering

3 Algorithm

5 / 29



Cross Entropy Clustering (CEC)

The cross entropy clustering (CEC) is a clustering method, which
was recently developed with the use of information theory. The
main advantage of CEC is that it automatically reduces unnecessary
clusters while combining the speed and simplicity of k-means with
the ability to use various Gaussian mixture models.

Implementation

in Java: https://github.com/kmisztal/CEC,

in Project R: package CEC,

in Project R: package GMUM.r:
http://gmum.ii.uj.edu.pl.
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CEC, part I

The general idea of CEC relies on:

finding the splitting of a set U ⊂ RN into pairwise disjoint sets
U1, . . . ,Uk ,

for each Ui we want to choose the best describing it density fi ,

the fi is selected as the standard Gaussian density in Rd which
is defined by

N(m,Σ) : x → 1

(2π)d/2(det Σ)1/2
exp(−1

2
‖x −m‖2

Σ),

where ‖x −m‖Σ – Mahalanobis norm.

7 / 29



CEC, part II

In fact we compare two densities:

empirical – uniform density on Ui (denoted by Ui ),

theoretical – density fi .

The comparison of two probabilities is done by the cross entropy
according to

H×(Ui‖fi ) = −
∫
S
Ui (x) ln fi (x)dx .

the first argument (Ui ) is treated as the ”target” probability
distribution, and the second (fi ) as the estimated one for which
an evaluation is attemped how well it ”fits” the target.

Moreover, the cross entropy corresponds to the theoretical code-
length of compression, in our case, of Ui -randomly chosen ele-
ment of RN with the code optimized for density fi .
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CEC, part III

In general case we would specify just the density subfamilies Fi

and tray to find the optimal density fi ∈ Fi .

Thus, the mean code-length for splitting U1, . . . ,Un described
by F1, . . . ,Fn equals

Eµ(U1,F1; . . . ;Un,Fn) :=
n∑

i=1

µ(Ui )·(− ln(µ(Ui ))+H×
(
Ui‖Fi

)
),

where
H×
(
Ui‖Fi

)
= inf

f ∈Fi

H×
(
Ui‖f

)
.

− ln(µ(Ui )) in the above formula corresponds to the memory
needed for identify algorithm which is used for coding the ele-
ment x ∈ Ui .
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CEC, part IV

The goal of CEC is to give spliting of set U, such that

Eµ(U1,F1; . . . ;Un,Fn)

is minimal.

Namely, for given density families F1, . . . ,Fn we are looking for
proper splitting U1, . . . ,Un of the given set U.

As a result we get following estimation

U ∼ max(p1f1, . . . , pk fk),

where fi belong to given density families Fi .
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CEC – optimal number of clusters

Figure: The step-by-step view of clusters reduction in the case of
a disc-like set for the Spherical CEC – the data was divided initially into
two almost equal parts.
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CEC – detection and recognition

(a) matches and coins (b) binaryzation (c) detected objects

Various patterns of the image can be distinguished, for example
multiple types of objects can be detected simultaneously, e.g. the
search for matches (Gaussian with specified covariance matrix) and
coins (spherical Gaussian with fixed radius) is possible at the same
time – compare with [Tabor, Misztal].
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CEC – issues

In general, we have to solve two issues:

calculation: how to calculate

H×
(
Ui‖Fi

)
for given density family Fi ,

design: how to chose the correct family Fi which meets our
expectations.
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CEC – design model

Theorem ([Tabor and Spurek, 2014])

Let µ be a discrete or continuous probability measure in RN with
well-defined mean and covariance matrix given by

m(µ) :=

∫
xdµ(x), Σ(µ) :=

∫
(x −m(µ))(x −m(µ))Tdµ(x).

Let a fixed positive-definite symmetric matrix Σ be given.
Then

H×
(
µ‖GΣ

)
= H×

(
µG‖N (m(µ),Σ(µ))

)
,

where µG denotes the probability measure with Gaussian density of
the same mean and covariance as µ. Consequently,

H×
(
µ‖GΣ

)
=

N

2
ln(2π) +

1

2
tr(Σ−1Σµ) +

1

2
ln det(Σ). (1)
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CEC – design model

Intuitively the
covariance matrix
which realized
infinitum of cross
entropy in such
case is given bya11 a12 0

a21 a22 0
0 0 ε
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Algorithm

1 Gaussian correction

2 Regression correction

3 CEC clustering

4 Result enhancement
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Gaussian correction

Original

Purpose:

Reduce data size.

We can notice that the same
regions of the skin are white or
have a color very close to white –
we want to increase those
regions.
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Gaussian correction

Original Mask
– the optimal Gaussian
distribution for this image.
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Gaussian correction

Original Original + Mask
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Regression correction

By the performing previous step
we can bring the same
abnormalities to image. Namely,
the surface of the pupil can
change, especially if its centre
the pupil does not correspond to
the mean of Gaussian distribution
from the previous step. To fix
such inconvenience we can
calculate the optimal plane
(using regression) and subtract it
from the image.
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Regression correction
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CEC clustering

The CEC was run with initial 20 clusters and end up with 7
clusters, the ε in covariance matrix was set to 10.
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Result enhancement – selecting clusters

In our case we decided to pick up the two clusters with smallest
empirical color variance.
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Result enhancement – delete “outliers”

Theorem ([Misztal and Tabor, 2013])

Consider the uniform probability density on the ellipse E ⊂ R2 with
covariance ΣE . Then

E = BΣE
(mE , 2). (2)

BΣE
(mE , r) = {x ∈ RN : (x −mE )TΣ−1

E (x −mE ) ≤ r2}.
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Result enhancement – Ellipse Shrinking

The Ellipse Shrinking algorithm finds iteratively the optimal ellipse
describing the given set. We start with all point of the given set
classified as members of optimal ellipse. Then we proceed with the
following two steps:

1 compute the optimal ellipse for the current set, namely
BΣ(µ, 2) (where Σ and µ are calculated for the current set);

2 from the optimal set delete points outside the optimal ball,
namely, points which Mahalanobis distance from the mean of
current set is greater than 2 (compare with Theorem 2).

We repeat the above two steps until no points are removed in the
second step.
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Result – ideal image
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Result – non ideal images

The iris images can be affected by many factors that influence the
shape, pattern or at least it may disturb the information collected
from the iris, for example off-angle or tilted images (image on the
left) or when the iris is damaged by a disease (image on the
right).
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Thank you for your kind
attention.
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