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Exploration — Exploitation
Dilemma




Exploration-Exploitation Dilemma

Should I...

...try something new? orjust... enjoy a known pleasure?




Exploration-Exploitation Dilemma

Any kind of adaptive agent...

(humans, animals, robots, societies, companies, ... )

...must perform and learn at the same time.
— how to balance it?
— more knowledge = better performance
— but learning = investment

Knowledge

Action




Exploration-Exploitation Dilemma

 When to explore ?

e How to explore ?




Generalities




Markovian Decision Process

best action depends
on the state

re R




Markovian Decision Process (MDP)

S={s,S;..-Sq} set of states
A={a;,a,..a,} set of actions
T=Pr(s|sa) transition function
R=Pr(r|s as) reward function

Solution : apolicy of actions P :S— A

which maximizes expected future rewards
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Reinforcement Learning

ﬁ
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* Observe s
* Decide

| « Execute a

e Receiver
e Observe s’
e Learn

Non-episodic setting : continuous lifetime experience




Agent Lifecycle

Observe s

Decide <

EXxecute a
Receive r
Observe s’
Learn

<

Choose Strategy
Select Action (from policy)

Update Models
Calculate Utility
Redefine Policy

*model-based learning
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RL with Limited Resources

e How about costs?




Reinforcement Learning with Energy

[
R — » energy = cumulated reward + initial energy
W, _
Werit : { - (DO + Z rt
—E-
: __[ Agent
state reward action
St "t a,
| B
il Environment

New challenge : managing costs, alert under

min




Standard
Approaches



Epsilon-Greedy Method

e Choose exploration

with probability €

e Choose exploitation

with probability 1-€
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Optimism In face of incertitude

e Optimistic Initialization
— Optimistic-greedy
— R-max

+ Qs 8 > Q*(s a
+ Ro(9)> R(9

e Exploration bonus

— UCB
e Uncertain or infrequent states




How to explore ?

e Undirected : e Directed :
= Random = Exploration Bonus
“when exploring, “when exploring,
do something unexpected” go towards unknown situations”
— choose action at random — search less visited states

— or more unpredictable states

e




Standard Approaches Difficulties

e Random Exploration

— not very efficient in general
— not like curiosity
— can leads the agent to known bad choices

e Epsilon Methods

— not efficient for sequential problems

e Optimistic Methods

— efficient exploration
— but long forced initial training time
— costs not taken in account



Proposed
Approach




Engaged Climber

e Intuition :
— Choose the strategy (explore / exploit)
— Stay engaged for a while (until to reach a “peak”)
— Except in critical situations




Engaged Climber

e 2 Policies :
— 1k - policy for exploiting
— 1y - policy for exploring

e 2 Utilities:
— Vg, Qr: Exploiting Utility based on reward
- Vi, Qx : Exploring Utility based on uncertainty

————



Engaged Climber

e Parameters :
C  :time in the current strategy
Crex - Maximum engagement time

[ heax : PEAK reward

M. - critical energy level alert
€ . exploration rate

——————




Engaged Climber
e Update Utlilities

Qr(s @) - Rsa) + v.X[T(s a ).Vx(s)]

Reward Immediate  Discount Expected Future
Utility Reward Factor Reward Utility

Qs a) - ssa) + v.2[T(s as).V(s)]

Learning Immediate  Discount Expected Future
Utility Uncertainty Factor Learning Utility



Reward Utility

rewarded
state
Reward :
R
Utility :
VR

discount factor y = 0.9




Learning Utility

uncertain
state
Uncertainty :
o
Utility :
VK

discount factor y = 0.9




Utilities

uncertain rewarded
state state




Choose Strategy (Engaged-Climber)
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Choose Strategy (1)
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Choose Strategy (111)
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Experience : Chain States

e 10 states, 2 actions :
— go forward
— back to start

small rewards

small penalties
—>

big reward

small reward (+0.5)
small penalty (-1.0)
big reward (+100.0)

LT




Experimental Results




Experimental Results

Table 1.: Experimental results

Method Time to discover the goal | Minimum Score
e-Greedy ~ 1200 ~ -400
Optimistic-Greedy ~ 60 ~ -30
Engaged-Climber ~ 170 ~+10

*using value-iteration method for calculating utilities




Conclusions

e Curiosity
— Policy for Exploring
— Policy for Exploiting

e Engagement
— More human-like behavior

e Consider limited resources

?’“" ' _ a




Perspectives

e Concrete search for peaks

e Factored Representations
e Partial Observation

e Multiple Policies

e Robustness

—————
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