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(a) GMM, k = 8. (b) CEC, k = 7.
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(c) GMM k = 8. (d) CEC, k = 7. (e) afCEC, k = 5.
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(f) GMM, k = 20. (g) CEC, k = 13. (h) afCEC, k = 9.
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Figure: 3D experiment.
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Figure: 3D experiment.
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GMM aims at finding p1, . . . ,pk ≥ 0,
∑k

i=1 pi = 1 and f1, . . . , fk
Gaussian densities such that the convex combination

f := p1f1 + . . .+ pk fk

optimally approximates the scatter of our data X = {x1, . . . , xn}
with respect to MLE cost function

MLE(f ,X ) := −
n∑

l=1

ln(p1f1(xl) + . . .+ pnfn(xl)).

A goal of CEC is to minimize the cost function, which is a minor
modification:

CEC(f ,X ) := −
n∑

l=1

ln(max(p1f1(xl), . . . ,pnfn(xl))).
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Figure: One dimensional Gaussian density on a curve.
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B. Zhang, C. Zhang, X. Yi.
Active curve axis gaussian mixture models.
Pattern recognition, 38, 2351–2362, 2005.
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Figure: Two dimensional Gaussian density on a curve.
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Figure: Comparison of ellipses generated by classical and modified
Gaussian densities.
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Active curve axis gaussian mixture models

B. Zhang, C. Zhang, X. Yi.
Active curve axis gaussian mixture models.
Pattern recognition, 38, 2351–2362, 2005.

Z. Ju, H. Liu.
A unified fuzzy framework for human-hand motion
recognition.
IEEE Transactions on Fuzzy Systems, 19, 901–913, 2011.

Z. Ju, H. Liu.
Fuzzy gaussian mixture models.
Pattern Recognition, 45, 1146–1158, 2012.
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Active curve axis gaussian mixture models

Advantages
Model is very intuitive.
Works nice in practice (on the plane).

Disadvantages
It is very hard (or even impossible) to give explicit formula
for orthogonal projection and arc length for more
complicated curves in higher dimensional spaces.
The generalized Gaussian density of acaGMM is not a
density model (no theoretical background).
The MLE cost function does not necessarily decrease with
iterations (problems with stop condition).
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Active Function Cross-Entropy Clustering

Figure: Difference between acaGMM and afCEC.
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The two dimensional Gaussian density for mT = [m1,m2] and

covariance matrix Σ =

[
σ1 0
0 σ2

]
is given by following formula

N(m,Σ)(x) = N(m1, σ
2
1)(x1)N(m2, σ

2
2)(x2), (1)

where in one dimensional case we have

N(m, σ2)(x) =
1√
2πσ

exp
(
−|x −m|2

2σ2

)
for m, σ ∈ R.
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1 acaGMM

N(m,Σ, f )(x) = 1√
2πσ1

exp
(
− lf (pf (x),m)2

2σ2
1

)
· 1√

2πσ2
exp

(
−‖pf (x)−x‖2

2σ2
2

)
.

2 afCEC

N(m,Σ, f )([x1, x2]) = N(m1, σ
2
1)(x1)N(m2, σ

2
2)(x2 − f (x1)).
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Figure: Level–sets for f–adapted Gaussian Distribution. 15 / 27
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(a) f (x) = a3x3 + a2x2 + a1x + a0
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Figure: Example in 3D.
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(a) (x , f (x)). (b) (f (y), y).

Figure: Two possible parabola fitting for quadrantal.
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Figure: Examples of ellipses of acaGMM and afCEC.
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(a) The AcaGMM method.

(b) The afCEC method.

Figure: Ellipses generated by AcaGMM and afCEC.
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To compare the results we use the standard Bayesian
Information Criterion (BIC)

BIC = −2LL + k log(n)

where k is a number of parameters in the model, n is a number
of points, and LL is a maximized value of the Log-likelihood
function.
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(a) afCEC (b) AcaGMM (c) GMM. (d) CEC

(e) Log-likelihood function. (f) BIC function.
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(g) AfCEC (h) AcaGMM (i) GMM (j) CEC

(k) Log-likelihood function (l) BIC function

Figure: Results of afCEC, AcaGMM, CEC and GMM in the case of
spiral-type set.
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Thank you for your attention.
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