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Motivation
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(f) GMM, k = 20. (g) CEC, k = 13. (h) afCEC, k = 9.
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Figure: 3D experiment.
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GMM aims at finding py,...,pxk >0, XK, p;=1and f;,..., f
Gaussian densities such that the convex combination

fi=p1fi + ...+ prfk

optimally approximates the scatter of our data X = {xy,...,xn}
with respect to MLE cost function

MLE(f, X) Zln p1fi (X)) + ... + Pnfa(X1)).

A goal of CEC is to minimize the cost function, which is a minor
modification:

CEC(f, X) Zln max(p1 £ (X)), - - -, Pnfa(X1)))-
1=1
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Figure: One dimensional Gaussian density on a curve.
7127



acaGMM
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Figure: Two dimensional Gaussian density on a curve.



acaGMM

o ] o

3 3

0 0

ER El

o o

S 3

o n

S - S

7 7

o ]

=R S

! T T T T T ! T T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 05 10

Figure: Comparison of ellipses generated by classical and modified
Gaussian densities.
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Active curve axis gaussian mixture models
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Advantages

@ Model is very intuitive.

@ Works nice in practice (on the plane).
Disadvantages

@ ltis very hard (or even impossible) to give explicit formula
for orthogonal projection and arc length for more
complicated curves in higher dimensional spaces.

@ The generalized Gaussian density of acaGMM is not a
density model (no theoretical background).

@ The MLE cost function does not necessarily decrease with
iterations (problems with stop condition).
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afCEC

Active Function Cross-Entropy Clustering

Figure: Difference between acaGMM and afCEC.
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afCEC

The two dimensional Gaussian density for m” = [my, m,] and

g

covariance matrix ¥ = [ 0

f] is given by following formula
2

N(m, )(x) = N(my, 0%)(x1)N(m2, 05)(x2), (1)
where in one dimensional case we have

[x —m|?
202

N(m,o?)(x) = 1 exp(

NG > for m,o € R.
mwo
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@ acaGMM

I x),m)? x)—x|12
M. 00 = s ()t (Lt
Q@ afCEC

N(m, =, )([x1, xe]) = N(m, 0%) (34 )N(mp, 03) (X2 — f(x4)).
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afCEC

() f(x) = §x°

Figure: Level-sets for f~adapted Gaussian Distribution. 15



afCEC
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Figure: Example in 3D.

17/27



afCEC
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Figure: Two possible parabola fitting for quadrantal.
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Figure: Examples of ellipses of acaGMM and afCEC.
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(a) The AcaGMM method.
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(b) The afCEC method.
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f—adapted Gaussian

To compare the results we use the standard Bayesian
Information Criterion (BIC)

BIC = —2LL + klog(n)

where k is a number of parameters in the model, nis a number
of points, and LL is a maximized value of the Log-likelihood
function.
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(a) afCEC  (b) AcaGMM  (c) GMM.  (d) CEC

il g
s Ce
581 1
T [=]
Sl -- ACEC |
® .’: --- CEC
% - - GMM g
12 3 4 5 68 7 8 8 10 T 1 2 3 4 5 8 7 8 9 10
Number of clusters Number of clusters
(e) Log-likelihood function. (f) BIC function.

25/27



f—adapted Gaussian

Log-likelihood

Number of clusters

(k) Log-likelihood function

BIC

12000 12200 12400

11800

(i) CEC

— AcaGMM
--- AfCEC

(o o
123 456 7 8 910 12 14

Number of clusters

() BIC function

26/27



f—adapted Gaussian

Thank you for your attention. |
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