Active Function Cross-Entropy Clustering

P. Spurek J. Tabor P. Markowicz

Będlewo 2015

(ロ)
 (日)
 (日)

(a) GMM, *k* = 8.

(b) CEC, *k* = 7.

<ロト</br>

< □ ト<</td>
< 目 ト</td>
< 目 ト</td>
< 回 ト</td>

2/27

(c) GMM k = 8.

(e) afCEC, *k* = 5.

(日) (四) (日) (日) (日) 500 2 2/27

(f) GMM, *k* = 20.

(g) CEC, k = 13. (h) afCEC, k = 9.

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 3/27

Figure: 3D experiment.

Figure: 3D experiment.

GMM aims at finding $p_1, \ldots, p_k \ge 0$, $\sum_{i=1}^k p_i = 1$ and f_1, \ldots, f_k Gaussian densities such that the convex combination

$$f:=p_1f_1+\ldots+p_kf_k$$

optimally approximates the scatter of our data $X = \{x_1, ..., x_n\}$ with respect to MLE cost function

MLE
$$(f, X) := -\sum_{l=1}^{n} \ln(p_1 f_1(x_l) + \ldots + p_n f_n(x_l)).$$

A goal of CEC is to minimize the cost function, which is a minor modification:

$$\operatorname{CEC}(f, X) := -\sum_{l=1}^{n} \ln(\max(p_1 f_1(x_l), \dots, p_n f_n(x_l))).$$

Figure: One dimensional Gaussian density on a curve.

√) Q (A) 7/27

э

B. Zhang, C. Zhang, X. Yi.

Active curve axis gaussian mixture models. Pattern recognition, 38, 2351–2362, 2005.

Figure: Two dimensional Gaussian density on a curve.

Figure: Comparison of ellipses generated by classical and modified Gaussian densities.

B. Zhang, C. Zhang, X. Yi. Active curve axis gaussian mixture models. Pattern recognition, 38, 2351–2362, 2005.

Z. Ju, H. Liu.

A unified fuzzy framework for human-hand motion recognition.

IEEE Transactions on Fuzzy Systems, 19, 901–913, 2011.

🔋 Z. Ju, H. Liu.

Fuzzy gaussian mixture models. Pattern Recognition, 45, 1146–1158, 2012.

Advantages

- Model is very intuitive.
- Works nice in practice (on the plane).

- It is very hard (or even impossible) to give explicit formula for orthogonal projection and arc length for more complicated curves in higher dimensional spaces.
- The generalized Gaussian density of acaGMM is not a density model (no theoretical background).
- The MLE cost function does not necessarily decrease with iterations (problems with stop condition).

Advantages

- Model is very intuitive.
- Works nice in practice (on the plane).

- It is very hard (or even impossible) to give explicit formula for orthogonal projection and arc length for more complicated curves in higher dimensional spaces.
- The generalized Gaussian density of acaGMM is not a density model (no theoretical background).
- The MLE cost function does not necessarily decrease with iterations (problems with stop condition).

Advantages

- Model is very intuitive.
- Works nice in practice (on the plane).

- It is very hard (or even impossible) to give explicit formula for orthogonal projection and arc length for more complicated curves in higher dimensional spaces.
- The generalized Gaussian density of acaGMM is not a density model (no theoretical background).
- The MLE cost function does not necessarily decrease with iterations (problems with stop condition).

Advantages

- Model is very intuitive.
- Works nice in practice (on the plane).

- It is very hard (or even impossible) to give explicit formula for orthogonal projection and arc length for more complicated curves in higher dimensional spaces.
- The generalized Gaussian density of acaGMM is not a density model (no theoretical background).
- The MLE cost function does not necessarily decrease with iterations (problems with stop condition).

Advantages

- Model is very intuitive.
- Works nice in practice (on the plane).

- It is very hard (or even impossible) to give explicit formula for orthogonal projection and arc length for more complicated curves in higher dimensional spaces.
- The generalized Gaussian density of acaGMM is not a density model (no theoretical background).
- The MLE cost function does not necessarily decrease with iterations (problems with stop condition).

Advantages

- Model is very intuitive.
- Works nice in practice (on the plane).

- It is very hard (or even impossible) to give explicit formula for orthogonal projection and arc length for more complicated curves in higher dimensional spaces.
- The generalized Gaussian density of acaGMM is not a density model (no theoretical background).
- The MLE cost function does not necessarily decrease with iterations (problems with stop condition).

Advantages

- Model is very intuitive.
- Works nice in practice (on the plane).

- It is very hard (or even impossible) to give explicit formula for orthogonal projection and arc length for more complicated curves in higher dimensional spaces.
- The generalized Gaussian density of acaGMM is not a density model (no theoretical background).
- The MLE cost function does not necessarily decrease with iterations (problems with stop condition).

afCEC

f-adapted Gaussian

Active Function Cross-Entropy Clustering

Figure: Difference between acaGMM and afCEC.

The two dimensional Gaussian density for $m^T = [m_1, m_2]$ and covariance matrix $\Sigma = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$ is given by following formula

$$N(\mathbf{m}, \Sigma)(\mathbf{x}) = N(m_1, \sigma_1^2)(x_1)N(m_2, \sigma_2^2)(x_2),$$
(1)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ●

where in one dimensional case we have

$$N(m,\sigma^2)(x) = rac{1}{\sqrt{2\pi}\sigma} \exp\left(-rac{|x-m|^2}{2\sigma^2}
ight) ext{ for } m,\sigma\in\mathbb{R}.$$

Motivation	acaGMM	afCEC	f-adapted Gaussian

acaGMM

$$N(\mathbf{m}, \Sigma, f)(\mathbf{x}) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left(-\frac{l_f(p_f(\mathbf{x}), \mathbf{m})^2}{2\sigma_1^2}\right) \cdot \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left(-\frac{\|p_f(\mathbf{x}) - \mathbf{x}\|^2}{2\sigma_2^2}\right).$$
afCEC

 $N(\mathbf{m}, \Sigma, f)([x_1, x_2]) = N(m_1, \sigma_1^2)(x_1)N(m_2, \sigma_2^2)(x_2 - f(x_1)).$

Figure: Level-sets for *f*-adapted Gaussian Distribution.

(a)
$$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

Figure: Example in 3D.

Figure: Two possible parabola fitting for quadrantal.

Figure: Examples of ellipses of acaGMM and afCEC.

(a) The AcaGMM method.

20/27

(□) < 団) < 目) < 目) < 目) < 目) < 日) < ○) < ○) </p>

(□) < 団) < 目) < 目) < 目) < 目) < 目) < 23/27</p>

To compare the results we use the standard Bayesian Information Criterion (BIC)

$BIC = -2LL + k \log(n)$

where k is a number of parameters in the model, n is a number of points, and *LL* is a maximized value of the Log-likelihood function.

25/27

26/27

Thank you for your attention.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <