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Multithreshold Linear Classification

Linear classification with one and multiple thresholds

Linear classifier
cl(x ; w , t) = sign(〈w , x〉+ t)

k-threshold Linear Classifier

cl(x ; w , {ti}ki=1) =
k∏

i=1

sign(〈w , x〉+ ti )
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Multithreshold Linear Classification

Note

It is highly nontrivial to find a good multithreshold linear classifier. It is
not clear whether efficient algorithm for finding even 2-threshold linear
classifier exists, nor what is the exact Vapnik-Chervonenkis dimension of
such family of hypotheses.
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Multithreshold Entropy Linear Classifier

Idea

Idea (Multithreshold Entropy Linear Classifier)

Let us look for such a linear projection w for which that distributions of
projected classes are as divergent as possible.

How we can quantiatively express how ”good” is projection w?

project each class from the training set on w

perform kernel density estimation of this one-dimensional data (why
is it so important?)

compute Cauchy-Schwarz Divergence between estimated densities

classify data using simple density-based classification
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Multithreshold Entropy Linear Classifier

Definition (W.M. Czarnecki and J. Tabor, 2014)

Multithreshold Entropy Linear Classifier is the density classifier based on
the one-dimensional projection of data on the w ∈ Rd such that it
maximizes DCS(JwTX−K, JwTX+K).

JX K is the kernel density estimation of X . Optimization of such an
objective function can be done (there exist analytical forms of all required
equations), however it is quite expensive.
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Multithreshold Entropy Linear Classifier

maximizew∈Rd DCS(JwTX−K, JwTX+K)

= 2H×2 (JwTX−K, JwTX+K)

− H2(JwTX−K)− H2(JwTX+K)

H2(f ) = − log
∫
f 2(x)dx

H×2 (f , g) = − log
∫
fg(x)dx

H2 are regularization terms (Renyi’s quadratic entropy)

H×2 are fitting terms (Renyi’s quadratic cross entropy)

Wojciech M. Czarnecki 19 February 2015 6 / 23



Multithreshold Entropy Linear Classifier

Regularized MELC

maximizew∈Rd − 2 log

∫
fg(x)dx + log

∫
f 2(x)dx + log

∫
g2(x)dx

Non-regularized MELC

maximizew∈Rd − 2 log

∫
fg(x)dx

for f = wTF , g = wTG
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Multithreshold Entropy Linear Classifier
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Multithreshold Entropy Linear Classifier
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Consistency

Consistency

In very simple terms the consistency of the machine learning method is its
ability to approximate any data probability distribution with smallest
possible classification error under some evaluation metric given
enough training points.

In other words we would expect that given infinitely many training points
our method converges to smallest obtainable error in terms of some
interesting metric.
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Consistency

In classification, one of the most basic and important evaluation metrics is
the accuracy, which is directly connected to minimizing the sum of 0/1
loss functions values

acc(y , p) = 1− 1
N

N∑
i=1

`0/1(yi , pi )

`0/1(y , p) = 1 ⇐⇒ py ≥ 0
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Consistency

Most of the existing machine learning algorithms change this loss function
(which is hard to optimize, non-continuous, lacks much information) to
some upper bound, for example hinge loss used in SVM because its
optimization is tracktable, easier, faster

`H(y , p) = max{0, 1− py}

so `H(y , p) ≥ `0/1(y , p) and `H(y , p) = 0→ `0/1(y , p) = 0
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Consistency

Due to the simple, additive nature of both optimization criterion and the
evaluation metric it is rather easy to show its consistency, but what about
models that do not optimize any additive point-based loss function?
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Learning capabilities of non-regularized MELC

Definition (Expected averaged accuracy)

Given a probability distributions f−, f+ the expected averaged accuracy of
classifier cl is

1

2

∫
max{0,−cl(x)}f−(x)dx +

1

2

∫
max{0, cl(x)}f+(x)dx

In other words EAA expresses probability of misclassification done by
our model cl assuming that classes are equaly probable.
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Learning capabilities of non-regularized MELC

Observation

For the family of multithreshold linear classifiers, the smallest obtainable
averaged classification error for f−, f+ is

min
w

∫
min{(wT f−)(x), (wT f+)(x)}dx
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Learning capabilities of non-regularized MELC

Note

For simplicity, we assume in futher slides that we are working on the
continuous data distributions f−, f+ instead of the samples X−,X+ as all
results we are interested in hold in the limiting case when the sample size
grows to infinity, so kernel density estimation is arbitrary close to the true
distributions
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Learning capabilities of non-regularized MELC

Simple distributions’ families

goal:
∫

min{f (x), g(x)}dx
criterion: −2 log

∫
(fg)(x)dx

Observation

Considered model is consistent with multithreshold linearly separable
distributions.

Observation

Considered model is consistent with radial normal distributions.
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Learning capabilities of non-regularized MELC

It seems that it is not possible to prove the general consistency with given
optimization criterion, however we can show analogous of loss function
upper bounding, but on the level of whole expected errors.
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Learning capabilities of non-regularized MELC

Theorem

Negative log-likelihood of minimal misclassification error of a given
multithreshold linear classifier for any non multithreshold linearly separable
distributions is at least a half of Renyi’s quadratic cross entropy of data
projections used by this classifier.

Sketch of the proof
Using Schwarz inequality and min{a, b} ≤

√
ab we get that

R =

∫ 1

0
min{wT f−(x),wT f+(x)}dx ≤

√∫ 1

0
wT f−(x)wT f+(x)

and as they are not separable, R is positive so

− ln(R) ≥ − ln

√∫ 1

0
wT f−(x)wT f+(x)

 = 1
2H
×
2 (wT f−(x),wT f+(x))
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Learning capabilities of non-regularized MELC

Examples
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Learning capabilities of non-regularized MELC

Examples
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Learning capabilities of non-regularized MELC

Examples
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Learning capabilities of non-regularized MELC

Summary

MELC is consistent with some simple distributions families

MELC bounds the true averaged misclassification probability in the
similar fashion hinge loss bounds the missclassification error

It appears that even though it is not convex, it nicely smooths out the
error surface making learning procedure more tracktable
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