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What is Multi-class Classification?

Multiclass classification is, given a data point x, decide on the
class with which the data point is annotated.
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What is Extreme Classification?

Extreme classification is multi-class classification using an
extremely large amount of classes.
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Example 1

We are continuously monitoring the internet for new webpages,
which we would like to categorize.
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Example 2

We have data from an online biomedical bibliographic database
that we want to index for quick access to clinicians.
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Example 3

We are collecting data from an online feed of photographs that
we would like to classify into image categories.
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Example 4

We add new articles to an online encyclopedia and intend to
predict the categories of the articles.
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Need

Need for theory and algorithms for extreme classification.
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How do algorithms and bounds scale
in #classes?
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How do algorithms and bounds scale
in #classes?
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Support Vector Machine (SVM) is a Popular Method
for Binary Classification (Cortes and Vapnik, ’95)

Core idea:
I Which hyperplane to take?



Introduction Distributed Algorithms Theory Learning Algorithms Conclusion 13 / 66

Support Vector Machine (SVM) is a Popular Method
for Binary Classification

I Which hyperplane to take?
I The one that separates the data with the largest margin
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Popular Generalization to Multiple Classes:
One-vs.-Rest SVM

Put C := #classes.

One-vs.-rest SVM
1 For c = 1..C
2 class1 := c, class2 := union(allOtherClasses)
3 wc := solutionOfSVM(class1,class2)
4 end
5 Given a test point x, predict cpredicted := arg maxc w>c x
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Runtime of One-vs.-Rest

... assuming sufficient computational resources (#classes many
computers)
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Problem With One-vs.-Rest

:) training can be parallelized in the number of classes
(extreme classification!)

:( Is just a hack. One-vs.-Rest SVM is not built for multiple
classes (coupling of classes not exploited)!
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There are “True” Multi-class SVMs,
So-called All-in-one Multi-class SVMs

SVMbinary:

MC:
Lin, Lee, and
Wahba (’04)

Watkins and
Weston (’99)

Crammer and
Singer (’02)

Problem: State of the art solvers require a training time
complexity of O(dn · C), where d =dim, n=#examples, and

C:=#classes.
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Aim: Develop algorithms where O(C) machines in parallel and
in O(dn) runtime train all-in-one MC-SVMs.

⇒ same time complexity as one-vs.-rest,
yet more sophisticated algorithm
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All-in-one SVMs

All of them have in common that they minimize a trade-off of a
regularizer and a loss term:

min
w=(w1,...,C)

1
2

∑
c

‖wc‖2 + C ∗ L(w,data)
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All Three MC-SVMs have:

minw=(w1,...,wC)
1
2
∑

c ‖wc‖2 + C∗ ...

But they differ in the loss: note: l(x) := max(0, 1− x)

CS: ...
n∑

i=1

[
max
c 6=yi

l((wyi − wc)
Txi)

]
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Can we solve these all-in-one MC-SVMs in parallel?

Let’s look at Lee, Lin, and Wahba (LLW) first.
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This is the LLW Dual Problem

max
α

max
w̄

− 1
2

C∑
c=1

||Xαc −
1
C
∑

c̃

Xαc̃︸ ︷︷ ︸

=w̄

||2 +
∑

c,i:yi=c

αi

s.t. αi,yi = 0

0 ≤ αi,c ≤ C
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This is the LLW Dual Problem

max
α,w̄

∑
c

Dc(αc,w̄)︷ ︸︸ ︷−1
2
||Xαc − w̄||2 +

∑
i:yi=c

αi


s.t. αi,yi = 0

0 ≤ αi,c ≤ C
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LLW: Proposed Algorithm

Algorithm Simple wrapper algorithm
1: function SIMPLESOLVE-LLW(C,X,Y)
2: while not converged do
3: for c = 1..C do in parallel
4: αc ← arg maxα̃c

Dc(α̃c, w̄)
5: end for
6: w̄← arg maxw D(α,w)
7: end while
8: end function

Alber, Zimmert, Dogan, and Kloft (2016):
NIPS submitted
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Ok, fine so far with the LLW SVM.
Now, let’s look at the Weston and Watkins (WW) SVM.
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WW: This is How the Dual Problem Looks Like

max
α∈Rn×C

=:D(α)︷ ︸︸ ︷
C∑

c=1

−1
2
|| − Xαc||2 +

∑
i:yi 6=c

αi,c


s.t. ∀i : αi,yi = −

∑
c:c6=yi

αi,c,

∀c 6= yi : 0 ≤ αi,c ≤ C

A common strategy to optimize such a dual problem, is to
optimize one coordinate after another (“dual coordinate
ascent”):

1 for i = 1, ..., n

2 for c = 1, . . . , C
3 αi,c = maxαi,c D(α)

4 end

5 end
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This is Now the Story...

We optimize αi,c into gradient direction:

∂

∂αi,c
: 1− (wyi − wc)

Txi

Derivative depends only on two weight vectors (not all C
many!).

Can we exploit this?
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Analogy: Soccer League Schedule

We are given a football league (e.g., Bundesliga) with C many
teams.
Before the season, we have to decide on a schedule such that
each team plays any other team exactly once.
Furthermore, all teams shall play on every matchday so that in
total we need only C − 1 matchdays.

Example
Bundesliga has C = 18 teams.
⇒ C − 1 = 17 matchdays (or twice that many if counting home

and away matches)

How can we come up with a schedule?
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This is a Classical Computer Science Problem...

This is the 1-factorization of a graph problem.

The solution is
known:

Here: C = 8 many teams, 7 matchdays
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WW: Proposed Algorithm

Algorithm Simplistic DBCA
wrapper algorithm

1: function SIMPLESOLVE-WW(C,X,Y)
2: while not converged do
3: for r = 1...C −1 do # iterate over “matchdays”

4: for c = 1..C/2 do in parallel # iterate over

“matches”

5: (ci, cj)← the two classes (“opposing teams”)
6: αIci ,cj , αIcj ,ci ← arg maxα1,α2

Dc(α1, α2)

7: end for
8: end for
9: end while

10: end function

Alber, Zimmert, Dogan, and Kloft (2016): arXiv:1611.08480
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Accuracies

Dataset # Training # Test # Classes # Features
ALOI 98,200 10,800 1000 128

LSHTCsmall 4,463 1,858 1,139 51,033
DMOZ2010 128,710 34,880 12,294 381,581

Dataset OVR CS WW LLW
ALOI 0.1824 0.0974 0.0930 0.6560

LSHTCsmall 0.549 0.5919 0.5505 0.9263
DMOZ2010 0.5721 - 0.5432 0.9586

Table: Datasets used in our paper, their properties and best test error
over a grid of C values.
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Results: Speedup
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Open questions

I higher efficiencies via GPUs?
I Why does LLW accuracy break?
I parallelization for CS?
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Theory and Algorithms in Extreme Classification

I Just saw: Algorithms that better handle large number of
classes
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Theory and Algorithms in Extreme Classification
I Theory not prepared for extreme classification

I Data-dependent bounds scale at least linearly with the
number of classes
(Koltchinskii and Panchenko, 2002; Mohri et al., 2012; Kuznetsov et al.,
2014)
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Theory of Extreme Classification

Questions
I Can we get bounds with mild dependence on #classes?
⇒ Novel algorithms?
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Multi-class Classification
Given:

I Training data z1 = (x1, y1), . . . , zn = (xn, yn)︸ ︷︷ ︸
∈X×Y

i.i.d.∼ P

I Y := {1, 2, . . . , C}
I C = number of classes

aeroplane bicycle bird boat bottle

bus car cat chair cow

diningtable dog horse motorbike person

pottedplant sheep sofa train tvmonitor
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Formal Problem Setting

Aim:
I Define a hypothesis class H of functions h = (h1, . . . , hc)

I Find an h ∈ H that “predicts well” via

ŷ := arg max
y∈Y

hy(x)

Multi-class SVMs:
I hy(x) = 〈wy, φ(x)〉
I Introduce notion of the (multi-class) margin

ρh(x, y) := hy(x)− max
y′:y′ 6=y

hy′(x)

I the larger the margin, the better

Want: large expected margin Eρh(X,Y).
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Types of Generalization bounds for Multi-class
Classification

Data-independent bounds
I based on covering numbers

(Guermeur, 2002; Zhang, 2004a,b; Hill and Doucet, 2007)

- conservative
I unable to adapt to data

Data-dependent bounds
I based on Rademacher complexity

(Koltchinskii and Panchenko, 2002; Mohri et al., 2012; Cortes et al., 2013;

Kuznetsov et al., 2014)

+ tighter
I able to capture the real data
I computable from the data
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Def.: Rademacher and Gaussian Complexity
I Let σ1, . . . , σn be independent Rademacher variables (taking

only values ±1, with equal probability).

I The Rademacher complexity (RC) is defined as

R(H) := Eσ

[
sup
h∈H

1
n

n∑
i=1

σi h(zi)
]

I Let g1, . . . , gn ∼ N(0, 1).

I The Gaussian complexity (GC) is defined as

G(H) = Eg
[

sup
h∈H

1
n

n∑
i=1

gi h(zi)
]

Interpretation: RC and GC reflect the ability of the hypothesis
class to correlate with random noise.

Theorem ((Ledoux and Talagrand, 1991))

R(H) ≤
√
π

2
G(H) ≤ 3

√
π

2

√
log nR(H).
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Existing Data-Dependent Analysis

The key step is estimating R({ρh : h ∈ H}) induced from the
margin operator ρh and class H.

Existing bounds build on the structural result:

R(max{h1, . . . , hC} : hj ∈ Hc, c = 1, . . . , C) ≤
C∑

c=1

R(Hc) (1)

Best known dependence on the number of classes:
I quadratic dependence Koltchinskii and Panchenko (2002); Mohri et al.

(2012); Cortes et al. (2013)

I linear dependence Kuznetsov et al. (2014)

Can we do better?

The correlation among class-wise components is ignored.
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A New Structural Lemma on Gaussian Complexities
We consider Gaussian complexity.

I We show:

G
(
{max{h1, . . . , hC} : h = (h1, . . . , hC) ∈ H}

)
≤

1
n
Eg sup

h=(h1,...,hC)∈H

n∑
i=1

C∑
c=1

gichc(xi) . (2)

Core idea: Comparison inequality on GPs: (Slepian, 1962)

Xh :=
n∑

i=1

gimax{h1(xi), . . . , hC(xi)},Yh :=
n∑

i=1

C∑
c=1

gichc(xi),∀h ∈ H.

E[(Xθ − Xθ̄)
2] ≤ E[(Yθ −Yθ̄)

2] =⇒ E[sup
θ∈Θ

Xθ] ≤ E[sup
θ∈Θ

Yθ].

Eq. (2) preserves the coupling among class-wise components!
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Example on Comparison of the Structural Lemma

I Consider

H := {(x1, x2)→ (h1, h2)(x1, x2) = (w1x1,w2x2) : ‖(w1,w2)‖2 ≤ 1}

I For the function class {max{h1, h2} : h = (h1, h2) ∈ H},
sup

(h1,h2)∈H

∑n
i=1 σih1(xi) +

sup
(h1,h2)∈H

∑n
i=1 σih2(xi)

sup
(h1,h2)∈H

n∑
i=1

[gi1h1(xi) + gi2h2(xi)]

Preserving the coupling means supremum in a smaller space!
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Estimating Multi-class Gaussian Complexity

I Consider a vector-valued function class defined by

H := {hw = (〈w1, φ(x)〉, . . . , 〈wc, φ(x)〉) : f (w) ≤ Λ},

where f is β-strongly convex w.r.t. ‖ · ‖
I f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)− β

2α(1− α)‖x− y‖2.

Theorem

1
n
Eg sup

hw∈H

n∑
i=1

C∑
c=1

gichw
c (xi) ≤

1
n

√√√√2πΛ

β
Eg

n∑
i=1

∥∥∥(gicφ(xi)
)C

c=1

∥∥∥2

∗
, (3)

where ‖ · ‖∗ is the dual norm of ‖ · ‖.
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Features of the complexity bound
I Applies to a general function class defined through a

strongly-convex regularizer f
I Class-wise components h1, . . . , hC are correlated through

the term
∥∥∥(gicφ(xi)

)C
c=1

∥∥∥2

∗
I Consider class Hp,Λ := {hw : ‖w‖2,p ≤ Λ}, (1

p + 1
p∗ =1); then:

1
n
Eg sup

hw∈Hp,Λ

n∑
i=1

C∑
c=1

gichw
c (xi) ≤

Λ

n

√√√√ n∑
i=1

k(xi, xi)×
√

e(4 log C)1+ 1
2 log C , if p∗ ≥ 2 log C,(

2p∗
)1+ 1

p∗ C
1

p∗ , otherwise.

The dependence is sublinear for 1 ≤ p ≤ 2, and even
logarithmic when p approaches to 1!



Introduction Distributed Algorithms Theory Learning Algorithms Conclusion 50 / 66

`p-norm MC-SVM
I Consider class Hp,Λ := {hw : ‖w‖2,p ≤ Λ}, (1

p + 1
p∗ =1); then:

1
n
Eg sup

hw∈Hp,Λ

n∑
i=1

C∑
c=1

gichw
c (xi) ≤

Λ

n

√√√√ n∑
i=1

k(xi, xi)×
√

e(4 log C)1+ 1
2 log C , if p∗ ≥ 2 log C,(

2p∗
)1+ 1

p∗ C
1

p∗ , otherwise.

The dependence is sublinear for 1 ≤ p ≤ 2, and even
logarithmic when p approaches to 1!



Introduction Distributed Algorithms Theory Learning Algorithms Conclusion 51 / 66

Future Directions

Theory: A data-dependent bound independent of the class
size?

⇒ Need more powerful structural result on Gaussian
complexity for functions induced by maximum operator.

I Might be worth to look into `∞-norm covering numbers.

Reference: Lei, Dogan, Binder, and Kloft (NIPS 2015);
Journal submission forthcoming
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`p-norm Multi-class SVM

Motivated by the mild dependence on C as p→ 1, we consider

(`p-norm) Multi-class SVM, 1 ≤ p ≤ 2

min
w

1
2

[ C∑
c=1

‖wc‖p
2

] 2
p

+ C
n∑

i=1

(1− ti)+,

s.t. ti = 〈wyi , φ(xi)〉 − max
y:y6=yi
〈wy, φ(xi)〉,

(P)
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Empirical Results

Empirical Results:
Method / Dataset Sector News 20 Rcv1 Birds 50 Caltech 256
`p-norm MC-SVM 94.2±0.3 86.2±0.1 85.7±0.7 27.9±0.2 56.0±1.2
Crammer & Singer 93.9±0.3 85.1±0.3 85.2±0.3 26.3±0.3 55.0±1.1

Proposed `p-norm MC-SVM consistently better on benchmark
datasets.
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Wait... I performed this Experiment:

I So I took the DMOZ2010 dataset
(Aim: categorize new webpages)
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Wait... I performed this Experiment:
I OVR-SVM, Train=128,710, Test=34,880; Result:

27% of classes never used in prediction



Introduction Distributed Algorithms Theory Learning Algorithms Conclusion 57 / 66

New Learning Algorithm

Schatten-SVM

min
W=(w1,...,wC)

1
2

∑
c

‖W‖2
Sp︸ ︷︷ ︸

Schatten norm

+C
n∑

i=1

[
max
c6=yi

l((wyi − wc)
Txi)

]

Schatten-p norm

‖W‖Sp
:= p
√∑

i σ
p
i (
√

W>W)



Introduction Distributed Algorithms Theory Learning Algorithms Conclusion 58 / 66

Geometry of Schatten Norm
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Schatten-norm Parameter p Controls coverage
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Results
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Future Directions

Algorithms: New models & efficient solvers
I Novel models motivated by theory

I top-k MC-SVM (Lapin et al., 2015)

I Analyze p > 2 regime
I Extensions to multi-label learning
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Conclusion

Extreme Classification
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