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What is Multi-class Classification?

Multiclass classification is, given a data point x, decide on the
class with which the data point is annotated. J

Binary classification:

Multi-class classification:
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What is Extreme Classification?
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Example 1

We are continuously monitoring the internet for new webpages,
which we would like to categorize.

[l (ol[z] open directory project Abi Search.
‘about dmoz | dmoz blog | suggest URL | help | link | editorlogin

Arts Business Computers

Movies, Television, Music... Iobs, Real Estate [nvesting . Intemet Software, Hardware
Games Health Home

Video Games, RPGs. Gambling .. Fitness, Medicine, Alternative..  Eamily, Consvmers, Cooking
Kids and Teens News Recreation

Arts, School Time, TeenLife . Media Newspapers Weather . Travel, Food, Outdoors, Humor.
Reference Regional Science

Maps, Education, Libra US, Canada, UK, E: Biology, Psychology, Ph
Shopping Society Sports

Clothing, Food, Gifts... People, Religion, Issues. Baseball, Soccer, Basketball..
World

Catali, Dansk, Devtsch. Expaiiol, Francais, taliano. 4558, Nederlands, Polski, Pvecioni, Svensiza




Example 2

We have data from an online biomedical bibliographic database

Ui Distributed Algorithms  Theory Learning Algorithms ~ Conclusion

that we want to index for quick access to clinicians.

Pubmed gov Searcn: [Fushied - EIRSS save seann Aoval
WLE. Natianal |biocd
erionat fneitas of Ht ot
Display Semings; (%) Summany, 20 per page, Sored by Recenly Agdad Sendto: %) Filles your result
Choose Destination Ly

Results: 1 to 20 of 2982326 — £ Cliokoard s
I Tosc effects of Litsea slliptica Blume essential aile € Collections ¢ E-mall ey
1. Sprague-Dawley rats,  Drder

Taib 1S, Budin 58, 5itl Nor Aln 58, Mohamed J, Lot

5. Rajab NF, Hidayatulfathi O Dowroad 2302326 tems,

iv Sl B, 2008 Mov,1 0{113:813-0.
55 [PubMed- in process]

Format

Sor by
e ar Recentty Added *]
2 wall-lit INg Systern be
Wang ¥, CuiH, Zhaa Y, Wang Z0 Creche File

J Zhajiang Univ Sti 8. 2008 Mo, 10011380512
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Example 3

We are collecting data from an online feed of photographs that
we would like to classify into image categories.




l

Example 4

We add new articles to an online encyclopedia and intend to
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predict the categories of the articles.

© ikpesi th e encyclpedia - Meslla s (S
Fle Edit Yiew Higory Bockmatis Tock He

®c AY (W hitpy/enwikipedia.org/wiki/Main_Page SRR BE 2
W Wikipeds,the free ncycopeds |

Learn more about citing Wikipedia. 2 Login/create account  *

main page | discussion view source | | history
Welcome to Wikipedia, = Arts = Histo
the free encyclopedia that anyone can edit. = Biography = Math
s 2,926,393 articles in English = Geography = Sciet
WIKIPEDIA - g - cuesions et  Gategories - Featredcon
navigation
= Main page Today's featured article In the news
= Contents
= Featured content A white dwarf LIS LA
= Current events is a small star —— <]
= Random article

composed
mostly of
electron-
degenerate
matter.

= Abomb blast kills at
least 69 people and
injures more than 150
others in the Sadr City

search

Go Search

Done

8/66
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Need
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How do algorithms and bounds scale
in #classes?
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How do algorithms and bounds scale
in #classes?

theoretical bound &
runtime_algo

linear

sqrt

log

const

#classes
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e Distributed Algorithms
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Support Vector Machine (SVM) is a Popular Method
for Binary Classification (Cortes and Vapnik, 95)

Core idea:
» Which hyperplane to take?
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Support Vector Machine (SVM) is a Popular Method
for Binary Classification

» Which hyperplane to take?
» The one that separates the data with the largest margin

support vegtor o

suppoft vector

suppart vector
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Popular Generalization to Multiple Classes:
One-vs.-Rest SVM
Put C := #classes.
One-vs.-rest SVM
1 Forc=1..C
2 class1 := ¢, class2 := union(allOtherClasses)
3  w. =solutionOfSVM(class1,class?2)
4 end
5 Given a test point x, predict cpregicted := arg max, w,/ x

OOO
oo — 0 oL
>
b~

No

L:L
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Runtime of One-vs.-Rest

runtime_algo

constant

... assuming sufficient computational resources (#classes many

computers)

15/66
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Problem With One-vs.-Rest

1) training can be parallelized in the number of classes
(extreme classification!)

:(Is just a hack. One-vs.-Rest SVM is not built for multiple
classes (coupling of classes not exploited)!

16/66
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There are “True” Multi-class SVMs,
So-called All-in-one Multi-class SVMs

binary: SVM

Lin, Lee, and Watkins and Crammer and

MC: \ahba (04)  Weston (99) Singer (02)
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There are “True” Multi-class SVMs,
So-called All-in-one Multi-class SVMs

binary: SVM

Lin, Lee, and Watkins and Crammer and

MC: \Wanhba (04)  Weston (99)  Singer (02)
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Aim: Develop algorithms where O(C) machines in parallel and
in O(dn) runtime train all-in-one MC-SVMs.

18/66

J

runtime_algo

constant
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All-in-one SVMs

All of them have in common that they minimize a trade-off of a
regularizer and a loss term:

w=(

1 )
min - |+ C *x L(w,dat
w}lw’Cﬂ;HWCH (w,data)
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All-in-one SVMs

All of them have in common that they minimize a trade-off of a
regularizer and a loss term:

w=(

. 1 2
min - |“+ C *x L(w,data
min 5 0wl (v, data)
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All Three MC-SVMs have:

2 2
i, —(u,,..nc) § e [Well* + O . J
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All Three MC-SVMs have:

minWZ(Wl,...,wC) % zc ||M’Y¢:‘||2 + C* wes J
But they differ in the loss: note: /(x) := max(0, 1 — x)
CS: {max I(( WC)Tx,-)]
FYi

i=1
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All Three MC-SVMs have:

M0y 0y, we) 3 2oc IWell” + Cx ... J
But they differ in the loss: note: I(x) := max(0, 1 — x)
CS: {m#ax I((wy, — wc)Tx,-)]
i=1 L7
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All Three MC-SVMs have:

miny,_,, . we) % D HWCHZ + C* ... J
But they differ in the loss: note: I(x) := max(0, 1 — x)
CS: max I((wy, — w. ) x;
D |max (s, = w)"x)
WW: D H(wy = we) )
i=1 [y |

Sources: Lee, Lin, and Wahba (2004), Weston and Watkins (1999), Crammer and Singer (2002)
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All Three MC-SVMs have:

My e 5 D wel? + C ... |
But they differ in the loss: note: I(x) := max(0, 1 — x)
CS: IZ;: rgg){( I((wy, — wC)Txi):
WW: 53 > 1wy, = we)x;)
=1 Lot |
LLW: s Zl(—w?x,-) , S.t. ch =0
i=1 | cti ¢

Sources: Lee, Lin, and Wahba (2004), Weston and Watkins (1999), Crammer and Singer (2002)
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runtime_algo

constant

#classes
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runtime_algo

constant

#classes

Let’s look at Lee, Lin, and Wahba (LLW) first. J
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This is the LLW Dual Problem

c
1 1
max ) E HXO‘C_E 2 Xaz||> + E Q;
c=1 ¢ c,iryj=c
——

s.t. Qjy, = 0
0< Qie < c
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This is the LLW Dual Problem

c
1 1 )
max max — > ElHXaC—C 2 Xog ||” + E Q;
c= ¢

c,ityi=c
——

=w
s.t. Qjy, = 0
0<aw,.<C
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This is the LLW Dual Problem

D¢ (cte,w)

1 112
max » | =3 [[Xoe =[P+ Y a

c ityij=c

s.t. Qjy;, = 0
0< Q¢ <C
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LLW: Proposed Algorithm

Algorithm Simple wrapper algorithm
. function SIMPLESOLVE-LLW(C, X, Y)
2 while not converged do

3 for c = 1..C do in parallel

4 ac < argmaxg D (G, w)

5: end for
6
7
8:

w <— argmax,, D(a, w)
end while
end function

Alber, Zimmert, Dogan, and Kloft (2016):
NIPS submitted
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LLW: Proposed Algorithm

Algorithm Simple wrapper algorithm
. function SIMPLESOLVE-LLW(C, X, Y)
while not converged do
for ¢ = 1..C do in parallel
ac < argmaxg D (G, w)
end for
w <— argmax,, D(a, w)
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LLW: Proposed Algorithm

Algorithm Simple wrapper algorithm
. function SIMPLESOLVE-LLW(C, X, Y)
while not converged do
for ¢ = 1..C do in parallel
ac < argmaxg D (G, w)
end for
w <— argmax,, D(a, w)
end while
. end function

@ N o 9 & @ N o2

Alber, Zimmert, Dogan, and Kloft (2016):
NIPS submitted rejected ;)
PLoS submitted, arXiv:1611.08480



Introduction ENElNEENaGluER Theory Learning Algorithms  Conclusion 28/66

Ok, fine so far with the LLW SVM.
Now, let’s look at the Weston and Watkins (WW) SVM. J
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WW: This is How the Dual Problem Looks Like

=:D(a)
o
. D |5l Xadl 4 3 o
c=1 iryiFce
s.t. Yi: Qjy, = — Z Qj ey
cic#y;

Ve#yi: 0< ;o <C
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WW: This is How the Dual Problem Looks Like

=:D(a)
1
_ = 2 ,
max >\ Sll = Xadl P Y i
c=1 iryiF£c
s.t. Vi: iy, = Z Qi ¢,
ciey

Ve#yi: 0<a;. <C

A common strategy to optimize such a dual problem, is to
optimize one coordinate after another (“dual coordinate
ascent”):

1 fori=1,...n

2 fore=1,...,C

3 Qj, = Maxg,, D(a)
4 end

5 end

29 /66
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This is Now the Story...

We optimize «; . into gradient direction:

0

804,6

S 1= (wy, — we)

Derivative depends only on two weight vectors (not all C
many!).

30/66
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This is Now the Story...

We optimize «; . into gradient direction:

0

80&,',0

S 1= (wy, — we)

Derivative depends only on two weight vectors (not all C
many!).
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Analogy: Soccer League Schedule

We are given a football league (e.g., Bundesliga) with C many
teams.

Before the season, we have to decide on a schedule such that
each team plays any other team exactly once.

Furthermore, all teams shall play on every matchday so that in
total we need only C — 1 matchdays.

Example
Bundesliga has C = 18 teams.

= C — 1 = 17 matchdays (or twice that many if counting home
and away matches)
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This is a Classical Computer Science Problem...

This is the 1-factorization of a graph problem.
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This is a Classical Computer Science Problem...

This is the 1-factorization of a graph problem. The solution is

known:
3 ) 3 ) 3 2 3 >
BRI MR CL R
T T P
5 5\' 5 -« 5 X
6 7 6 7 6 7 6 7
r=1 r=2 r=3 r="7

Here: C = 8 many teams, 7 matchdays
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WW: Proposed Algorithm

Algorithm Simplistic DBCA

wrapper algorithm
1. function SIMPLESOLVE-WW(C, X, Y)
2: while not converged do

3: forr=1.C—1do # iterate over “matchdays”

4 for c = 1..C/2 do in parallel # iterate over
“matches”

5: (ci,cj) < the two classes (“opposing teams”)

6 Oy 5 Ol 4 ATEMAX, o) D.(a, )

7: end for

8: end for

9 end while
10: end function

Alber, Zimmert, Dogan, and Kloft (2016): arXiv:1611.08480
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Accuracies

34 /66

Dataset |# Training | # Test |# Classes | # Features
ALOI 98,200 |10,800| 1000 128
LSHTCsmall| 4,463 1,858 1,139 51,033
DMOZ2010 | 128,710 |34,880| 12,294 381,581

Dataset OVR CS WW | LLW
ALOI 0.18240.0974 | 0.0930|0.6560
LSHTCsmall| 0.549 [0.5919|0.5505|0.9263
DMOZ2010 | 0.5721 - 0.5432|0.9586

Table: Datasets used in our paper, their properties and best test error
over a grid of C values.
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Results: Speedup

Speedup

—o—WW:dmoz_2010
. WW:aloi

I
8 16
LLW:Number of Nodes

32

12 4 8
WW:Number of active Nodes

35/66
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Open questions

» higher efficiencies via GPUs?
» Why does LLW accuracy break?
» parallelization for CS?
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Theory and Algorithms in Extreme Classification

» Just saw: Algorithms that better handle large number of

classes

runtime_algo

constant

#classes

38/66
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Theory and Algorithms in Extreme Classification

» Theory not prepared for extreme classification

» Data-dependent bounds scale at least linearly with the
number of classes
(Koltchinskii and Panchenko, 2002; Mohri et al., 2012; Kuznetsov et al.
2014)

linear

#classes
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Theory of Extreme Classification

Questions
» Can we get bounds with mild dependence on #classes?
= Novel algorithms?

theoretical bound

linear

sqrt

log
const
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Multi-class Classification
Given:
> Training data z1 = (x1, 1), -, 20 = (X, ) " P

XXy
» V:={1,2,...,C}
» C = number of classes
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Formal Problem Setting

Aim:

» Define a hypothesis class H of functions h = (hy, ...

» Find an & € H that “predicts well” via

§ = [argmax ] h(x)
Multi-class SVMs:
> Ny (x) = (Wy, o(x))
» Introduce notion of the (multi-class) margin
pr(x,y) 7= hy(x) — max hy(x)
' Yy #y

» the larger the margin, the better

Want: large expected margin Ep,(X,Y).

42/66
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Types of Generalization bounds for Multi-class
Classification

Data-independent bounds
» based on covering numbers
(Guermeur, 2002; Zhang, 2004a,b; Hill and Doucet, 2007)
- conservative
» unable to adapt to data

Data-dependent bounds

» based on Rademacher complexity
(Koltchinskii and Panchenko, 2002; Mohri et al., 2012; Cortes et al., 2013;
Kuznetsov et al., 2014)

+ tighter

» able to capture the real data
» computable from the data
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Def.: Rademacher and Gaussian Complexity

» Letoy,...,o, be independent Rademacher variables (taking
only values +1, with equal probability).

» The Rademacher complexity (RC) is defined as
1 n
N(H) i=Eq [sup -3 [aifh(z)]
i=1

> Letgy,...,g. ~N(O,1).
» The Gaussian complexity (GC) is defined as

&(H) [ sup — Z-h Zi)

heH I

Interpretation: RC and GC reflect the ability of the hypothesis
class to correlate with random noise. J
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Def.: Rademacher and Gaussian Complexity

» Letoy,...,o, be independent Rademacher variables (taking
only values +1, with equal probability).

» The Rademacher complexity (RC) is defined as
1 n
N(H) = Eq[sup = > [oi]h(z)
i=1

> Letgy,...,g. ~N(O,1).
» The Gaussian complexity (GC) is defined as

G(H) [ sup — Z.h Zi)

heH I

Interpretation: RC and GC reflect the ability of the hypothesis
class to correlate with random noise. J

Theorem ((Ledoux and Talagrand, 1991))

R(H) < \[36 () <33 Viogn)
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Existing Data-Dependent Analysis

The key step is estimating R({p;, : h € H}) induced from the
margin operator p, and class H. J

Existing bounds build on the structural result:

R(max{hi,... ,hc}: hj € Hye=1,...,C) <| > R(H)| (1)
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Existing Data-Dependent Analysis

The key step is estimating R({p;, : h € H}) induced from the
margin operator p, and class H.

Existing bounds build on the structural result:

R(max{hi,... ,hc}: hj € Hye=1,...,C) <| > R(H)| (1)

Best known dependence on the number of classes:
» quadratic dependence Koltchinskii and Panchenko (2002); Mohri et al.
(2012); Cortes et al. (2013)

» linear dependence Kuznetsov et al. (2014)

The correlation among class-wise components is ignored. |
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A New Structural Lemma on Gaussian Complexities

We consider Gaussian complexity. J

» We show:

& ({max{hi,...,hc} :h=(hy,... he) eH}) <
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A New Structural Lemma on Gaussian Complexities

We consider Gaussian complexity. |

» We show:

& ({max{hy,...,hc} :h=(h,... hc) € H}) <

fll sup ZZg,C (x| (2)

""" EHlll,l

Core idea: Comparison inequality on GPs: (Siepian, 1962)

n n C
Xn = gmax{h(x;),....he(x)},Dn:=> > giche(xi),Yh € H.

i=1 i=1 c=1

B{(%) %)) < E[(D0 — D9)"] — Elsup %] < Elsup 20l




Theory

Example on Comparison of the Structural Lemma

» Consider

H = {(x1,x2) = (h1,h)(x1,x2) = (Wix1,waxz) : |[[(wi,w2)|]2 < 1}

» For the function class {max{h;,hy} : h = (h1,hy) € H},

’ S}?I))EH Yo oihi(x) +
1,12
3, T )
1,12

sup

n

Z[gilhl (xi) + ginha(x;)]
(hl,hz)EH i=1
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Estimating Multi-class Gaussian Complexity

» Consider a vector-valued function class defined by
H = {n" = ((w1,0(x)), ..., (We, p(x))) : (W) < A},
where f is s-strongly convex w.r.t. || - ||

> flax+ (1= a)y) < of () + (1 = a)f(y) — Fa(l —a)llx —y|*

Theorem

o N i < ;J 2t S st

n hweHzlcl

2

, (3)

where || - ||« is the dual norm of || - ||.
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Features of the complexity bound

» Applies to a general function class defined through a
strongly-convex regularizer f

» Class-wise components 4y, ..., he are correlated through
C
the term H <gil,(b(xi)>
» Consider class H, p := {h" : ||w|[», < A}, (117+1%:1); then:

c= *

\/E(4logC)l+@, if p* > 21logC,

AT .
(2p*)' 7|7 |, otherwise.

The dependence is sublinear for 1 < p <2, and even
logarithmic when p approaches to 1! J
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¢,-norm MC-SVM

> Consider class H, x := {h" : [[w]2, < A}, (;+5==1); then:

sup Z thc xi

n hwEHPAi 1 =1

e(4logC) e if p* > 210gC,
g g

1

(2p%)F7cim | otherwise.

The dependence is sublinear for 1 < p <2, and even
logarithmic when p approaches to 1! J

log
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Future Directions

Theory: A data-dependent bound independent of the class
size?
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Future Directions

Theory: A data-dependent bound independent of the class
size?

= Need more powerful structural result on Gaussian
complexity for functions induced by maximum operator.

» Might be worth to look into /..-norm covering numbers.

Reference: Lei, Dogan, Binder, and Kloft (NIPS 2015);
Journal submission forthcoming
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e Learning Algorithms
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¢,-norm Multi-class SVM

Motivated by the mild dependence on C as p — 1, we consider

(¢,-norm) Multi-class SVM, 1 <p <2

C 2 n
.1 5
w3 [Z HWCH‘Z’} "+ Cz;(l — 1)+,
c= =

st.tf;= <Wyi7 ¢(xl)> - 1:11ax.<wy, ¢(Xi)>,

VYA
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Empirical Results
Empirical Results:
Method / Dataset Sector News 20 Rev1 Birds 50 | Caltech 256
¢,-norm MC-SVM 94.240.3 86.210.1 85.7+0.7 | 27.94+0.2 56.0£1.2
Crammer & Singer | 93.9+0.3 | 85.14+0.3 | 85.24+0.3 | 26.3+0.3 55.0+1.1

Proposed ¢,-norm MC-SVM consistently better on benchmark
datasets.
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Wait... | performed this Experiment:
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Wait... | performed this Experiment:

» So | took the DMOZ2010 dataset
(Aim: categorize new webpages)

I h
EE‘E‘ open directory project Aol Search.
about dmoz | dmoz blog | suggest URL | help | link | editor login

Search | FETTE

Arts Business Computers
Movies, Television, Music... Jobs, Real Estate, Investing. .. Internet, Software, Hardware...
Games Health Home

Video Games, RPGs, Gambling, . Fitness, Medicine, Alternative..  Family, Consumers, Cooking. .

Kids and Teens News Recreation

Ats, School Time, TeenLife..  Media Newspapers, Weather..  Iravel, Food, Outdoors, Humor...

Reference Regional Science

Maps, Edueation Libraries. US, Canada, UK Europe - Biology, Psychology. Physies
Shopping Society Sports

Clothing, Food, Gifts.__ People, Religion, [ssnes Bazeball, Soccer, Basketball .
World

Catala. Dansk, Deutsch. Espafiol. Frangais, Italiano. B #%5F, Nederlands, Polski, Pyccrmi, Svenska...

Help build the largest human-edited directory of the web
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Wait... | performed this Experiment:
» OVR-SVM, Train=128,710, Test=34,880; Result:

1’OOO|E
H Em
| |
$ 100 i
Q.
IS
@©
(2]
2
[
‘® 10
=+
-
—
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New Learning Algorithm

Schatten-SVM
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Geometry of Schatten Norm
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Schatten-norm Parameter p Controls coverage
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Dataset Schatten-SVM OVR CS-sSVM HR-SVM | HR-LR | TD-SVM
Macro-F1 58.42 (52.20) 53.11 57.17 53.92 55.83 32.32
CLEF Micro-F1 80.21 (78.82) 78.92 79.94 80.02 80.12 70.11
Coverage 90.48 (85.71) 87.30 88.93
Macro-F1 30.10 (30.12) 26.89 28.22 28.94 28.12 20.01
LSHTC-SMALL | Micro-F1 46.12 (45.85) 43.34 45.77 45.31 44.94 38.48
Coverage 60.66 (61.54) 54.52 55.87
Macro-F1 30.29 25.13 27.35 - - -
WIKI-2011 Micro-F1 44.86 39.07 43.47 - - -
Coverage 74.58 61.51 67.90
Macro-F1 32.04 31.27 32.64 33.12 32.42 22.30
DMOZ-2010 Micro-F1 44.12 45.12 45.36 46.02 45.84 38.64
Coverage 68.57 63.82 64.50
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Future Directions

Algorithms: New models & efficient solvers
» Novel models motivated by theory
» top-k MC-SVM (Lapin et al., 2015)
» Analyze p > 2 regime
» Extensions to multi-label learning
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Conclusion

Extreme Classification
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Conclusion

theoretical bound &
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