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What it is about .... A general approach to Using superset learning
superset leamning ... for weighted learmning ...
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... is a specific type of weakly supervised learning, studied under different
names in machine learning:

— learning from partial labels
— multiple label learning
— learning from ambiguously labeled examples

... also connected to learning from coarse data in statistics (Rubin, 1976;

Heitjan and Rubin, 1991), missing values, data augmentation (Tanner and
Wong, 2012).
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e Consider a standard setting of supervised learning with instance
space X, output space ), and hypothesis space H

e Output values y,, € )V associated with training instances x,,,
n=1,..., N, are not necessarily observed precisely but only
characterised in terms of supersets

Yo 3 yn .
e Set of imprecise/ambiguous/coarse observations is denoted

O = {(wl,Yl),...,(CBN,YN>}

e An instantiation of O, denoted D, is obtained by replacing each Y,
with a candidate y,, € Y,,.
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How to learn from (super)set-valued data?

We suggest that successful learning should go hand in hand with
data disambiguation, i.e., finding out about the (precise) y,
underlying the imprecise observations Y, ...
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LESS PLAUSIBLE

A plausible instantiation that can be fitted
reasonably well with a LINEAR model!

A less plausible instantiation, because
there is no LINEAR model with a good fit!
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A plausible instantiation that can be fitted
quite well with a QUADRATIC model!
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A plausible instantiation that can be fitted
quite well with a QUADRATIC model!

It all depends on how you look at the data!
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O =10, 0!

assume both class distributions to be Gaussian
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Model identification and data disambiguation should be performed
simultaneously:

identification

disambiguation

... quite natural from a Bayesian perspective:

P(h, D) = P(h)P(D | h)
=P(D)P(h|D)
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Likelihood of a model h € H:

¢((h) = P(O,D|h) = P(D|h)P(O|D,h)
— P(D|h)P(O|D)

Imprecise observation only depends on true data, not on the model.

generation precise EUIECECICIEN imprecise
MODEL DATA coarsening DATA
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Superset assumption:

const 1f O >3D

P(‘O\’D)Z{ 0 fOFD

Imprecise data is a superset, but no other assumption.

precise PRMSEEECICIEN imprecise
DATA ambiguation DATA
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We derive a principle of generalized empirical risk minimization with
the empirical risk

1 N
emp WZ Ynah L )

and the optimistic superset loss (OSL) function

(Y §) = min {L(y. ) |y € Y}

|

how well the (precise) model
fits the imprecise data
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The e-insensitive loss L(y, ) = max(|y — | — €,0) used in support vector
regression corresponds to L* with L the standard L, loss L(y,y) = |y — y| and
precise data y,, being replaced by interval-valued data Y,, = [y, — €,y + €.
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e Y, is a subset of ) (with characteristic function ) — {0,1})

e Y, is a fuzzy subset of ), characterized in terms of a
membership function Y — [0, 1]

interval fuzzy interval

25



INTELLIGENT

GENERALIZATION TO FUZZY DATA i

SYSTEMS

26



GENERALIZATION TO FUZZY DATA h
INTELLIGENT

[ | SYSTEMS

1
L**(Y,;g):/ L*([Y]a,yf) da LOSS
0

“Loss
Renp(h) = & 3217 (o)

n=1
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—> (generalized) Huber loss !
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Superset learning naturally applies to learning problems with
structured outputs, which are often only partially specified and
can then be associated with the set of all consistent completions.
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... Is the problem to learn a model that maps instances to TOTAL ORDERS
over a fixed set of alternatives/labels:

Machine Learning

Y = {ABCD,ABDC,...,DCBA}
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... Is the problem to learn a model that maps instances to TOTAL ORDERS
over a fixed set of alternatives/labels:

—>

Machine Learning

t“‘

(0,37,46,325,1,0)

... likes more
... reads more
... recommends more
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... Is the problem to learn a model that maps instances to TOTAL ORDERS
over a fixed set of alternatives/labels:

—>

~N

(0,37,46,325,1,0)

Training data is typically incomplete!
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... Is the problem to learn a model that maps instances to TOTAL ORDERS
over a fixed set of alternatives/labels:

p—

A=-C=B=D
A-~C=D=B
4 A-B~C=D

/8 L
S S I

D~-~B>=A>=C

set of linear
extensions

(0,37,46,325,1,0)

Training data is typically incomplete!
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KENDALL

Lmr) = Y [(x6) - =(G)*6) - () < 0]

1<i<j<M

SPEARMAN

L(m,7*) = Z |7 (i) — = (i)

1<i<M
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EXPERIMENTAL STUDIES i

— Cheng and H. (2015) compare an approach to label ranking based on
superset learning with a state-of-the-art label ranker based on the
Plackett-Luce model (PL).

— Two missing label scenarios: missing at random, top-rank

— General conclusion: more robust toward incompleteness

authorship glass
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So far:
Observations are imprecise/incomplete, and we have to deal with that!

Now:
Deliberately turn precise into imprecise data, so as to modulate the
influence of an observation on the learning process!

Motivated by the following observation:

YY) = (L'(Y,)>L*(Y',")

38
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n
minimize E w; - (y;i —w ' x;)
i=1
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We suggest an alternative way of weighing examples, namely,
via ,,data imprecisiation® ...

Y

full support for - >
precise observation Y
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weighing through
Lmprecisiation*
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loss

weighted loss

Y

Different ways of (individually) discounting the loss function.

In (Lu and H., 2015), we empirically compared standard locally weighted
linear regression with this approach and essentially found no difference.
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We suggest an alternative way of weighing examples, namely,
via ,,data imprecisiation® ...

A
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> Y
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—1 +1
certainly positive less certainly positive

45



INTELLIGENT

FUZZY MARGIN LOSSES i

SYSTEMS

GENERALIZED HINGE LOSS
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w=3/4

w=1

weighted loss

\ 4

Different ways of (individually) discounting the loss function.
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Semi-supervised learning with SVMs: Consider unlabeled data as instances
labeled with the superset {—1,+1}. The generalized loss L* with L the standard
hinge loss then corresponds to the (non-convex) “hat loss”.
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Robust loss minimization techniques:

Robust truncated-hinge-loss support vector machines (RSVM) trains
SVMs with the a truncated version of the hinge loss in order to be more robust
toward outliers and noisy data (Wu and Liu, 2007).

One-step weighted SVM (OWSVM) first trains a standard SVM. Then, it
weighs each training example based on its distance to the decision boundary
and retrains using the weighted hinge loss (Wu and Liu, 2013).

Our approach (FLSVM) is the same as OWSVM, except for the weighted
loss: instead of using a simple weighting of the hinge loss, we use the
optimistic fuzzy loss.

Non-convex optimization problem solved by concave-convex procedure
(Yuille and Rangaraja, 2002).
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Table 1: Experimental results: Average misclassification rate on test data (with

standard deviaton) for different methods, data sets, and noise levels.

perc | data sets SVM OWSVM RSVM FLSVM
Wdbc 0.0281 (0.0114) 0.0263 (0.0087) 0.0228 (0.0100) 0.0374 (0.0159)
Bupa 0.3188 (0.0928) 0.3043 (0.0774) 0.3072 (0.0776) 0.3188 (0.0934)
0% Banknote 0.0153 (0.0110) 0.0095 (0.0050) 0.0153 (0.0083) 0.0124 (0.0101)
Parkinsons | 0.1333 (0.0334) 0.1128 (0.0292) 0.1077 (0.0215) 0.1077 (0.0215)
Wdbc 0.0387 (0.0133) 0.0281 (0.0144) 0.0316 (0.0146) 0.0334 (0.0130)
Bupa 0.3391 (0.0442) 0.3304 (0.0527) 0.3159 (0.0635) 0.3159 (0.0720)
10% Banknote 0.0233 (0.0063) 0.0168 (0.0110) 0.0146 (0.0068) 0.0131 (0.0095)
Parkinsons | 0.1385 (0.0229) 0.1231 (0.0215) 0.1231 (0.0215) 0.1179 (0.0215)
Wdbc 0.0615 (0.0124) 0.0474 (0.0100) 0.0386 (0.0171) 0.0422 (0.0209)
Bupa 0.3855 (0.0364) 0.3478 (0.0369) 0.3275 (0.0873) 0.3362 (0.0601)
20% Banknote 0.0241 (0.0050) 0.0248 (0.0056) 0.0211 (0.0125) 0.0175 (0.0075)
Parkinsons | 0.1385 (0.0466) 0.1333 (0.0493) 0.1279 (0.0429) 0.1436 (0.0493)
Wdbc 0.0791 (0.0270) 0.0633 (0.0245) 0.0633 (0.0314) 0.0580 (0.0302)
Bupa 0.3884 (0.0854) 0.3710 (0.0861) 0.3826 (0.1033) 0.3710 (0.1018)
30% Banknote 0.0313 (0.0110) 0.0277 (0.0077) 0.0270 (0.0092) 0.0255 (0.0215)
Parkinsons | 0.1846 (0.0459) 0.1897 (0.0693) 0.1846 (0.0712) 0.1692 (0.0716)
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Under what conditions is (successful) learning in the
superset setting actually possible?
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Systematic imprecisiation
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non-systematicimprecisiation
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Liu and Dietterich (2014) consider the ambiguity degree, which is
defined as the largest probability that a particular distractor label
co-occurs with the true label in multi-class classification:

v = SUP{PYNDS(w,y)(e ~ Y) ‘ (CB,y) c X X y,ﬁ S yap(may) > 076 # y}
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Let 6 =log(2/(1 4 7)) and dy the Natarajan dimension of H. Define

4 1 1
no(H, e, 0) = e (dH (log(éldH + 2log L + log <9—6)) + log (5) -+ 1) .

Then, in the realizable case, with probability at least 1 — ¢, the model with
the smallest empirical superset loss on a set of training data of size
n > no(H,€,6) has a generalisation error of at most e.
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The balanced benefit condition:

RS (h) RS (h)
0<n < inf <
=M =080 R~ hen R(B)

§n2§17

where R°(h) is the expected superset loss of h.

For sufficiently large sample size,

R(iz) < R(h*) 4+ A(dy,€,0,m1,7m2) ,

h INTELLIGENT
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with probability 1 — d, where h* is the Bayes predictor and h the empirical
(superset) risk minimizer; in general, A cannot be made arbitrarily small.
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» Method for superset learning based on optimistic loss minimization,
performing simultaneous model identification and data disambiguation.

= Qur framework covers several existing methods as special cases but
also supports the systematic development of new methods.

= Completely generic principle (classification, regression, structured
output prediction, ...)

= Example weighing via data imprecisiation (- ,modeling data®)

=  Works for regression and classification, but seems to be even more
interesting for other problems, including ranking, transfer learning, ...

= More future work: Algorithmic solutions for specific instantiations of our
framework, theoretical foundations.
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