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What it is about .... A general approach to
superset learning ....

Using superset learning
for weighted learning ...
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... is a specific type of weakly supervised learning, studied under different 
names in machine learning:

- learning from partial labels
- multiple label learning
- learning from ambiguously labeled examples
- ...

... also connected to learning from coarse data in statistics (Rubin, 1976; 
Heitjan and Rubin, 1991), missing values, data augmentation (Tanner and
Wong, 2012).
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• Consider a standard setting of supervised learning with instance
space X , output space Y, and hypothesis space H

• Output values yn 2 Y associated with training instances xn,
n = 1, . . . , N , are not necessarily observed precisely but only
characterised in terms of supersets

Yn 3 yn .

• Set of imprecise/ambiguous/coarse observations is denoted

O =
�
(x1, Y1), . . . , (xN , YN )

 

• An instantiation of O, denoted D, is obtained by replacing each Yn

with a candidate yn 2 Yn.
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Classes
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Classes
one of many
instantiations
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one of infinitely many
instantiations
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How to learn from (super)set-valued data?
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Classes
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Classes
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Classes
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MORE PLAUSIBLE LESS PLAUSIBLE

A less plausible instantiation, because
there is no LINEAR model with a good fit!

A plausible instantiation that can be fitted
reasonably well with a LINEAR model!



DATA DI SAM BI G UATI O N

15

PLAUSIBLE PLAUSIBLE

A plausible instantiation that can be fitted
quite well with a QUADRATIC model!

I t a l l  d e p e n d s o n  h o w y o u lo o k a t t h e d a t a !

A plausible instantiation that can be fitted
quite well with a QUADRATIC model!
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plausible 
instantiation

=	{						,							}

assume both class distributions to be Gaussian

quadratic
discriminant
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implausible
instantiation

=	{						,							}

assume both class distributions to be Gaussian



Model identification and data disambiguation should be performed
simultaneously:

identification

disambiguation
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DATA MODEL

... quite natural from a Bayesian perspective:

P(h,D) = P(h)P(D |h)
= P(D)P(h | D)
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minimization
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Data
imprecisiation
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Imprecise observation only depends on true data, not on the model.

precise
DATAMODEL

generation imprecise
DATA

imprecisiation

coarsening

Likelihood of a model h 2 H:

`(h) = P(O,D |h) = P(D |h)P(O |D, h)

= P(D |h)P(O |D)
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Imprecise data is a superset, but no other assumption.

precise
DATAMODEL

generation imprecise
DATA

imprecisiation

ambiguation
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how well the (precise) model
fits the imprecise data

We derive a principle of generalized empirical risk minimization with
the empirical risk

Remp(h) =
1

N

NX

n=1

L⇤�Yn, h(xn)
�

and the optimistic superset loss (OSL) function

L⇤(Y, ŷ) = min
�
L(y, ŷ) | y 2 Y

 
.
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1 1

interval fuzzy interval
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L O SS

1

↵

↵-cut
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L O SS

RI SK

L⇤⇤(Y, ŷ) =

Z 1

0
L⇤

⇣
[Y ]↵, ŷ

⌘
d↵

Remp(h) =
1

N

NX

n=1

L⇤⇤
⇣
Yn, h(xn)

⌘
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à Huber loss !

L⇤⇤(Y, ŷ)
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à (generalized) Huber loss !
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Superset learning naturally applies to learning problems with 
structured outputs, which are often only partially specified and 

can then be associated with the set of all consistent completions. 
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... is the problem to learn a model that maps instances to TOTAL ORDERS
over a fixed set of alternatives/labels:

DA CB
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(0,37,46,325,1,0)

... likes more

... reads more

... recommends more

... 

A D C B

... is the problem to learn a model that maps instances to TOTAL ORDERS
over a fixed set of alternatives/labels:

� ��
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Tr a in in g  d a t a i s t y p ic a l l y in c o m p le t e !

(0,37,46,325,1,0)

A C

... is the problem to learn a model that maps instances to TOTAL ORDERS
over a fixed set of alternatives/labels:

�
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:

Tr a in in g  d a t a i s t y p ic a l l y in c o m p le t e !

set of linear 
extensions

(0,37,46,325,1,0)

... is the problem to learn a model that maps instances to TOTAL ORDERS
over a fixed set of alternatives/labels:
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K E N D A L L

S P E A R M A N
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- Cheng and H. (2015) compare an approach to label ranking based on 
superset learning with a state-of-the-art label ranker based on the
Plackett-Luce model (PL).

- Two missing label scenarios: missing at random, top-rank
- General conclusion: more robust toward incompleteness
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So far: 
Observations are imprecise/incomplete, and we have to deal with that!

Now: 
Deliberately turn precise into imprecise data, so as to modulate the
influence of an observation on the learning process!
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We suggest an alternative way of weighing examples, namely, 
via „data imprecisiation“ ...

1

1

1

full support for
precise observation
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weighing through
„imprecisiation“
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Different ways of (individually) discounting the loss function.

lo
s

s

In (Lu and H., 2015), we empirically compared standard locally weighted
linear regression with this approach and essentially found no difference. 

weighted loss

OSL 
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1

certainly positive less certainly positive

We suggest an alternative way of weighing examples, namely, 
via „data imprecisiation“ ...
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G E N E R A L I Z E D  H I N G E  L O S S
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Different ways of (individually) discounting the loss function.

w=1 
w=3/4 

w=1/2 

w=1/4 

w=0 

w=1 
w=3/4 

w=1/2 

w=1/4 

w=0 

weighted lossOSL 
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Robust loss minimization techniques:

§ Robust truncated-hinge-loss support vector machines (RSVM) trains
SVMs with the a truncated version of the hinge loss in order to be more robust 
toward outliers and noisy data (Wu and Liu, 2007).

§ One-step weighted SVM (OWSVM) first trains a standard SVM. Then, it
weighs each training example based on its distance to the decision boundary
and retrains using the weighted hinge loss (Wu and Liu, 2013).

§ Our approach (FLSVM) is the same as OWSVM, except for the weighted
loss: instead of using a simple weighting of the hinge loss, we use the
optimistic fuzzy loss.

Non-convex optimization problem solved by concave-convex procedure
(Yuille and Rangaraja, 2002).
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Under	what	conditions	is	(successful)	learning	in	the	
superset	setting	actually	possible?
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systematic imprecisiation
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non-systematic imprecisiation
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Liu and Dietterich (2014) consider the ambiguity degree, which is

defined as the largest probability that a particular distractor label

co-occurs with the true label in multi-class classification:

� = sup
n

PY⇠Ds(x,y)(` 2 Y ) | (x, y) 2 X ⇥ Y, ` 2 Y, p(x, y) > 0, ` 6= y
o
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Let ✓ = log(2/(1 + �)) and dH the Natarajan dimension of H. Define

n0(H, ✏, �) =
4

✓✏

✓
dH

✓
log(4dH + 2 logL+ log

✓
1

✓✏

◆◆
+ log

✓
1

�

◆
+ 1

◆
.

Then, in the realizable case, with probability at least 1� �, the model with

the smallest empirical superset loss on a set of training data of size

n > n0(H, ✏, �) has a generalisation error of at most ✏.
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The balanced benefit condition:

0  ⌘1  inf
h2H

RS(h)

R(h)
 sup

h2H

RS(h)

R(h)
 ⌘2  1 ,

where RS(h) is the expected superset loss of h.

For su�ciently large sample size,

R(ĥ)  R(h⇤) +�(dH, ✏, �, ⌘1, ⌘2) ,

with probability 1� �, where h⇤
is the Bayes predictor and ĥ the empirical

(superset) risk minimizer; in general, � cannot be made arbitrarily small.
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§ Method for superset learning based on optimistic loss minimization, 
performing simultaneous model identification and data disambiguation.

§ Our framework covers several existing methods as special cases but 
also supports the systematic development of new methods. 

§ Completely generic principle (classification, regression, structured
output prediction, ...)

§ Example weighing via data imprecisiation (à „modeling data“) 

§ Works for regression and classification, but seems to be even more
interesting for other problems, including ranking, transfer learning, ... 

§ More future work: Algorithmic solutions for specific instantiations of our
framework, theoretical foundations.
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