Contents

Machine Learning Theory

Kalina JASINSKA Krzysztof DEMBCZYNSKI, Nikos KARAMPATZI-
AKIS, Extreme Classification under Limited Space and Time
Budgeto

Krzysztof ADAMIAK, Krzysztof SLOT, Misclassification-Driven
Sample Relabeling for Supervised Kernel Principal Compo-
nent Analysis

Stanistaw JASTRZEBSKI, Igor SIERADZKI, On Certain Limita-
tions of Recursive Representation Model

Katarzyna JANOCHA, Wojciech Marian CZARNECKI, On Loss
Functions for Deep Neural Networks in Classification

Jacek KLiMASZEWSKI, Marcin KORZEN, Optimization of ¢P-
regularized Linear Models via Coordinate Descent

Vitalik MELNIKOV, Pritha GUPTA, Bernd FRICK, Daniel
KAiMANN, Eyke HULLERMEIER, Pairwise versus Pointwise
Ranking: A Case Study ...

Unsupervised Learning

Agnieszka NOWAK-BRZEZINSKA, Tomasz RYBOTYCKI, Impact of
Clustering Parameters on the Efficiency of Knowledge Min-
ing Process in Rule-based Knowledge Bases

Magdalena WIERCIOCH, Towards Learning Word Representa-
1720 0 P

Maciej BrRzZESKI, Przemystaw SPUREK, Uniform Cross-entropy
CluSteringt e

25

37

49

61

73

85

103

Grzegorz JURDZINSKI, Word Embeddings for Morphologically
Complex Languages ...,

Appliactions

Ameur DouiB, David LANGLOIS, Kamel SMATLI, A Translation
Evaluation Function based on Neural Network

Miroslaw KOrRDOS, Data Selection for Neural Networks

Bartosz SADEL, Barttomiej SNIEZYNSKI, Online Supervised
Learning Approach for Machine Scheduling

Sarunas RAUDYS, Aistis RAUDYS, Zidrina PABARSKAITE, Gene
BizIULEVICIENE, Portfolio Inputs Selection from Imprecise
Training Datac i e

Grzegorz SUROWKA, Search for Resolution Invariant Wavelet
Features of Melanoma Learned by a Limited ANN Classi-
Her oo

127

139

153

165

177

189

Schedae Informaticae Vol. 25 (2016): 9-23

doi: 10.4467,/20838476S1.16.001.6182 t | | | 2017
theoretical foundations |
of machine learning, Krakow

Extreme classification under limited space and time budget

KALINA JASINSKA!, KRzZYSZTOF DEMBCZYNSKI',
N1K0OS KARAMPATZIAKIS?
nstitute of Computing Science, Poznan University of Technology, Poznati, Poland
2Microsoft Research, Redmond, USA
E-mail: {kjasinska,kdembczynski}@cs.put.poznan.pl, nikosk@microsoft.com

Abstract. We discuss a new framework for solving extreme classification (i.e.,
learning problems with an extremely large label space), in which we reduce the
original problem to a structured prediction problem. Thanks to this we can
obtain learning algorithms that work under a strict time and space budget. We
mainly focus on a recently introduced algorithm, referred to as LTLS, which is
to our best knowledge the first truly logarithmic time and space (in the number
of labels) method for extreme classification. We compare this algorithm with
two other approaches that also rely on transformation to structured prediction
problems. The first algorithm encodes original labels as binary sequences. The
second algorithm follows the label tree approach. The comparison shows the
trade-off between computational complexity (in time and space) and predictive
performance.

Keywords: supervised learning, space and time complexity of learning algo-
rithms, extreme classification, multi-class classification, learning reductions

1. Introduction

Extreme classification refers to multi-class and multi-label problems where the size
m of the output space is extremely large. This type of problems appears in many

Received: 11 December 2016 / Accepted: 30 December 2016

10

application areas of machine learning, such as recommendation, ranking, and language
modeling. The extreme setting brings a lot of challenges, such as, time and space
complexity of training and prediction, long tail of labels, missing labels and very few
training examples per label.

A naive solution for the problem is to train an independent model for each label
individually. This approach, often referred to as one-vs-all (OVA), has linear time and
space complexity in the number of labels. Unfortunately, in many real world problems
this complexity is too costly. One of the main challenges of extreme classification is
to reduce the complexity, bearing in mind the need to control the trade-off between
lowering the complexity and retaining good predictive performance. To achieve this
goal, we consider a new approach for solving extreme classification, which casts the
original problem to a structured prediction problem.

An example of a simple structured prediction problem is sequence labeling in
which a categorical label is assigned to each member of a sequence of observed values.
The aim is to find the most probable labeling for a given sequence. Finding the best
output for a given example usually relies on performing a complex inference task. For
simple problems, different variants of Viterbi algorithm [1, 2] can be applied. For
more complex problems, advanced search techniques are used to explore the large
output space efficiently [3]. A structured prediction problem can be treated as a
complex multi-class classification problem over all possible label assignments to the
sequence. In this paper, we consider the opposite approach that casts classification to
structured output prediction. The simplest transformation of this type is to encode
labels by sequences of bits. The length of the sequence does not have to be the
same for each label. Then, by choosing a proper dependence structure between bits
and using appropriate training and inference methods one can get a very compact
representation of an extreme classification problem. In this new reduction framework,
we can formulate the problem as optimizing the predictive performance under limited
time and space budged.

Recently, Jasinska and Karampatziakis [4] have introduced a truly log-time and
log-space training and prediction algorithm that can produce its top k predictions
in time O(klog(k)log(m)) for an output space of size m. To do so, the algorithm,
referred to as LTLS, encodes labels as paths in a trellis of width 2. The inference
consists in finding the longest weighted path in the trellis from the source node to
the sink node. Each weight associated with an edge in the trellis is obtained from a
binary classifier trained by stochastic gradient descent. To perform efficient inference a
variant of Viterbi algorithm is used. In the following we compare this approach to two
other methods. The first method is also logarithmic in time and space, but treats all
the code bits to be independent. We refer to this method as sequences of independent
bits (SIB). The second method are probabilistic classifier trees (PCTs) [5, 6]. In this
method the labels are coded by paths in a tree. Such a tree can be treated as a
generalization of the trellis. Unfortunately, for this method we cannot give strict
logarithmic bounds on time and space, but as shown in [5] this method is statistically
consistent. In this paper we focus on multi-class problems, however, PCTs and LTLS
can also be easily modified to multi-label problems [6, 4].

The paper is organized as follows. The next section shortly describes state-of-
the-art methods for extreme classification. Section 3 states the problem formally.
In Section 4 and 5 we present the SIB and PCT algorithm, respectively. Section 6

11

describes a variant of LTLS that is made to be similar to the previous methods in
order to perform a fair comparison between these different approaches. Section 7
presents experimental results. Last section concludes the paper.

2. Related work

There are several groups of extreme classification algorithms that follow different
paradigms such as sparsity, low-rank approximation, tree-based search, or label filtering.

The sparsity-based methods can reduce model size and sometimes training and
prediction times due to fewer operations. An example of such an approach is PD-Sparse
[7], where the authors show that it is possible to get accurate sparse models in high
dimensional datasets. However sparsity is not guaranteed to reduce the model size
without severely hurting model accuracy. Examples of the low-rank methods, also
called embedding methods, are SLEEC [8], LEML [9], WSABIE [10] or Rembrandt
[11]. These techniques can be thought of as (supervised) dimensionality reduction
followed by an OVA classifier. All these approaches still remain linear in the size of
the output space during training and prediction unless additional approximations are
employed, such as subsampling of the negative labels.

The tree-based approaches can be divided into decision tree- and label tree-based
methods. Those methods reduce prediction time, but not necessary lead to models
with space complexity that is logarithmic in the number of labels. For example,
FastXML [12] builds a tree of depth logarithmic in the number of training examples.
The multi-class logarithmic time prediction is also addressed by LOMtree [13]. Label
tree-based methods such as PCT, discussed later in this paper, have usually O(log(m))
training time, since an update with one training instance is applied to O(log(m))
models. Even though these algorithms reduce prediction time significantly, by not
querying all the models, their complexity in general is greaten than O(log(m)).

The last group of algorithms assumes that learning can be performed off-line (so
the complexity of training is allowed be higher) and focuses on the use of appropriate
data structures to accelerate classification of test examples in the prediction phase.
Therefore, this approach is sometimes called label filtering [14] as it avoids a linear
scan over all labels. The label partitioning for sublinear ranking method [15] uses
clustering to group training examples, and then assigns a set of possible labels to
each group in a way that optimizes the overall performance. The clustering step
is used only for filtering the labels and is performed independently from training a
final model which can be any multi-class or multi-label classifier, even very expensive.
During classification a test example is first assigned to one of the groups, and then
the final model is called only for labels assigned to this group. Other approaches
use Bloom filters [16], filtering lines [14] or tree structures [17]. In case of linear
models (e.g., logistic regression, perceptron, the last layer in a deep network), the
problem of speeding up classification of test examples is often referred to as maximum
inner product search (MIPS) [18, 19]. An exact solution can be optimally obtained
by the so-called threshold algorithm [20] which can be used in a variety of machine

12

learning tasks [21]. However, this algorithm does not scale well to extreme classification.
Therefore approximate algorithms need to be considered. The MIPS problem is similar,
but not equivalent, to the nearest neighbor search. It is therefore possible to adapt
approximate nearest neighbor algorithms to this problem. For example, a modified
variant of the locality-sensitive hashing [22] has been introduced in [19]. Let us also
emphasize that the MIPS problem can be applied during training as a specific instance
of negative sampling [18].

3. Problem Setting

In the following we consider multi-class classification problems. We denote with (z,y) a
multi-class instance, where is a feature vector, € R%, and y a label, y € {1,...,m}.
We focus on classification methods that are optimized for precision@k. In case of
k =1, this performance measure corresponds to accuracy, or stated differently, to:

precision@1l =1 —£y/1(y, f(x)) =1 - [y # f(z)],

where £o/1(y, f(x)) is the 0/1 loss and f(x) a multi-class classifier.

The methods we consider rely on representing labels as binary sequences. The
difference between methods lays in the choice of encoding and the assumed dependence
structure between elements of the sequence. In general, this approach reduces the
original problem to a bunch of binary subproblems. The task is then to appropriately
transform original training examples to binary examples for each subproblem. During
prediction, the binary outcomes are decoded to original labels. This inference task
can vary depending on the chosen encoding and dependence structure.

We analyze each method under a strict time and space budget. For example, we
would like to have budget that is logarithmic in the number of labels. We follow
here the learning reduction framework [23] which studies a decomposition of complex
learning tasks into simpler problems for which numerous and powerful algorithms
are available. This decomposition should guarantee that a solution to the simple
subproblems gives a solution to the original problem [24]. Ideally, a no-regret (i.e.,
optimal) solution to each base problem should translate into an optimal solution to the
original problem. In such case, a reduction (i.e., decomposition) is called consistent.
It is, however, an open question whether we can obtain consistent reductions under a
strict time and space budget.

We assume that the time complexity of training of a binary classifier with respect
to a single training example is O(1). Similarly, calling a binary classifier for a single
test example is also O(1). The space complexity is harder to formalize in this way.
We assume, however, that storing a single binary classifier is also O(1). In this way
we can easily express the computational complexity in terms of the number of labels.
In the analysis, we do not take into account the space complexity needed for storing
the mapping between original labels and bit sequences, which in general is O(m), and
the time complexity needed to encode labels to bit sequences.

13

4. Simple coding by sequences of independent bits

We start our discussion with a very simple algorithm. It relies on encoding labels as
sequences of independent bits in such a way that each label is assigned to one and only
one binary code. We refer to this approach as sequences of independent bits (SIB).
In general, we encode an original label y by a binary code ¢(y) of length I. Let ¢;(y)
indicate the i-th bit in the code. If we assume that bits of the code are independent,
then the probability of label y can be obtained by:

l

P(y|z) = P(c(y) | @) = [] Plai(y)lz).

i=1

To get the model, we need to train base classifiers that estimate P(c;(y)|x). We can
use any method that estimates probabilities, for example, logistic regression.

Figure 1. A trellis used in SIB for m = 22. Node start is connected to both states
of the first bit; both states of the last bit are connected to node end. To handle
an arbitrary number of classes m we connect to the stop node the up states at bits
corresponding to 1’s in binary representation of m.

When the number of labels is a power of 2, then we can use binary coding of fixed
length. In such a case, learning and prediction with SIB is straight-forward. Otherwise,
we need to use a specific coding to make the method logarithmic in time and space
with the number of labels. We use here encoding similar to the one used in LTLS [4].
The codes of labels can be visualized as paths in a trellis with additional by-pass edges
(see Figure 1). The binary states of bits are represented by up and down nodes (for
the i-th bit, these are nodes ¢;(y) = 1 and ¢;(y) = 0, respectively). Moreover, we use
auxiliary nodes, begin, end, and stop. The first two indicate the start and the end of
the code. The stop node determines an early stop of the code. The intermediate nodes

14

d; are used to show independence of bits. In this representation, we have exactly m
paths, one for each label. More formally, let 2¢ < m < 2%T1. Then, the first 2% labels
can be coded using a vanilla binary code on a bits. The rest of labels b = m — 2% are
coded using shorter codes. We assume that the last bit in such code is always set to
1. In that way we can encode arbitrary number b of labels, b € {1,2% — 1}. If the
code ends after the i-th bit, then we get additional 2! codes. The use of this code,
however, requires to train a base classifier for additional stop class, for each bit i we
use to extend the number of codes.

All incoming edges to up, down, and stop nodes are associated with a probability
estimation function Q.(x). To indicate an edge we use a pair (4,¢;(y)), where i is
the bit and ¢;(y) its value. For all other edges, we use weight equal 1. Thanks to
this convention, prediction of the most probable label corresponds to finding the most
probable path. To this end, we can use dynamic programming, which in context of
probabilistic models is known as the Viterbi algorithm [1]. The top-k scoring paths
can be found by a modification of the Viterbi algorithm called List Viterbi [2]. Let us
remark that the upper bound of the number F of edges with probability estimates in
the trellis is 3|log, m]. So, the space complexity of the model is logarithmic in the
number of labels. Since the Viterbi algorithm is also linear with the number of edges,
the time complexity is also logarithmic.

To compute estimates P(c;(y)|x), we train edge classifiers Q; ,(,)) () in such a
way that:

Qo) +Qu1y =1.

Moreover, we need to train additional classifiers that check the early stop of the code,
i.e., Qistop)- In such a case, we can assume:

Qi0) + Q1) + Qistop) = 1-

Let us underline that the code described above is not entirely binary, as it includes
additional symbol stop.

The independence assumption made in SIB is rather unrealistic. Therefore, this
method will often lead to a very crude approximation. However, this simple approach
can be treated as a good baseline for other methods with a strict time and space budget,
since its time and space complexity is logarithmic with the number of labels. Let us
also remark that SIB resembles the ECOC (Error-Correcting Output Codes) approach
for classification [25]. ECOC uses, however, codes with additional redundancy, what
is not a case of SIB.

5. Probabilistic classifier trees

In contrast to SIB, probabilistic classifier trees (PCTs) [5] take all dependences between
bits into account. Moreover, they use prefix codes, so there is no need to use any
additional symbol, like stop in case of SIB. For label y coded by c¢(y) of length [its

15

€o €(1,1)

(Cz(y) = 0) (02 (y) = 1) (Cz(y) = 0) (Cz(y) = 1)

€(0,0,0) €(0,0,1)

(s =0) (ealy) =1)

[N

Figure 2. A tree used in PCT for m = 5. All leaf nodes are additionally connected
with node end to resemble the trellis used in SIB.

conditional probability in PCT is given by:

l

P(y|z) = Pc(y) |z) = [[Plei@)lcir (), .., ca(y), @) .

i=1

In other words, each bit of the code depends on all antecedent bits. This formulation
is known as the chain rule of probability and holds for any joint distribution, i.e.,
any distribution can be factorized in this way. Therefore PCTs are statistically
consistent [5].

Let us recall that any prefix code can be represented by a tree with 0/1 splits. If
the number of labels is a power of 2, then binary coding of fixed length can be used
(in result a fully balanced tree is obtained). Otherwise, one can use complete trees or
Huffman coding [26]. Each path from the root to a leaf node corresponds to a code
word. Figure 2 shows an example of a coding tree for multi-class classification with 5
labels. To make the representation of the tree to be similar to the trellis used in SIB,
we denote the root node as the start node and added the end node. All nodes except
those incoming to the end node are associated with probability estimators Q.(x). To
indicate an edge, we use bits on a path from the start node to the node to which the
edge directs, i.e., (c1(y),...,ci(y)). To compute estimate P(c;(y)|ci—1(y),-..,c1(y), x),
we train edge classifiers Q(c, (y)....,c;(y))(®) in such a way that:

Qer ()i ,0)(®) + Qer(y),eeima (), 1) () = 1.

It is easy to see that there are m — 1 classifiers in the tree (i.e., one classifier per
internal node of the tree). Therefore, the space complexity of this method is linear

16

in the number of labels. However, by using the hashing trick [27] jointly over all
models, the space complexity can be made constant. One can also use model sharing
to reduce the space complexity, for example, by using one model for each tree level.
The learning time for Huffman and balanced trees is logarithmic, since a given training
example is used only in classifiers on a path corresponding to the code of a given
label. Prediction can be logarithmic if it is made in a greedy way. PCTs can use,
however, more involved search procedures such as uniform-cost search or A* [28, 29].
Thanks to them, the regret of PCTs can be bounded. Moreover, it can be shown
that search time is inversely proportional to the probability of the top label. If this
probability is lower bounded, then for the balanced trees the top label can be found
in the logarithmic time. In the worse case scenario, however, the time complexity of
the prediction procedure is linear in the number of labels [28, 5].

Let us notice that similar algorithms to PCTs appear under different names in the
literature. In multi-class classification, this method is also known under the name of
conditional probability trees [30] and nested dichotomies [31]. The same concept is
also known in neural networks and natural language processing under the name of
hierarchical softmax [32].

6. LTLS

LTLS, proposed by Jasinska and Karampatziakis [4], is a model that can be situated
in-between sequences of independent bits and probabilistic classifier trees. In the
following, we consider a specific instance of this approach that resembles maximum
entropy markov models (MEMMs). In general, MEMMSs take dependencies up to the
k-th degree into account:

l
P(y|z) = P(e(y) |2) = [] Ples®leim(y). - - cimily)) -

=1

We use k = 1, i.e., the current bit depends only on one previous bit. There are
different possibilities of estimating P(c;(y)|ci—1(y),) and coding of original labels.
LTLS undertakes the following approach.

As already mentioned above, SIB use the same encoding as LTLS. The trellis used
in LTLS, presented in Figure 3, resembles the one used in SIB. As before, we have up
and down nodes, and three auxiliary nodes, start, end, and stop. The number of bits is
also |log(m)]. The main difference lays in additional edges that model dependencies
between consecutive bits. Therefore, the upper bound of the number E of edges with
probability estimates in the trellis is 5|log, m]. To indicate an edge we use here a
triple (7, ¢;(y),ci—1(y)), i.e., e = (2,1,0) means that the edge is between the up state
of the second bit and the down step of the first bit. As before, prediction is made by
using the Viterbi algorithm.

Training of LTLS is logarithmic in the number of labels. To compute estimates of

17
P(ci(y)|ci—1(y), =), LTLS trains edge classifiers Q; c,(y),c;_,(y)) in such a way that

Qo1 + Qe =1 and Q10 + Qo0 =1.

As in case of SIB, we also need to train additional classifiers checking the early stop of
the code, i.e., Q(i,stop,n(m)- In such a case, we have:

Qi,0,1) T Qei1,1) + Qistop,1) = 1+

Probability estimators () can be trained in various ways. In this paper, for the
sake of consistency, we use logistic regression. We refer to this method using the name
LTLS-LR.

stop

(y)2 =0 (y)s =0
€(2,0,0) c(v)2 €(3,0,0) cv)s €(4,0,0)

Figure 3. A trellis used in LTLS-LR for m = 22. Node start is connected to both
states of the first bit; both states of the last bit are connected to node end. To handle
an arbitrary number of classes m we connect to the stop node the up states at bits
corresponding to 1’s in binary representation of m. The code corresponding to path

[6(1,1,),6(2,0,1)76(3,1,0)a€(4,stop,1)] is (1707 1)~

One can also consider a learning procedure, which will make LTLS to be very
similar to conditional random fields [33]. We do not discuss this possibility in this
paper. Let us, however, remark that in the original paper LTLS has been used with a
learning procedure that minimizes a variant of structured hinge loss. From this point
of view, LTLS can be seen as an instance of structured support vector machines [34].
In this paper, however, we have decided to investigate a variant of LTLS that is as
much as possible similar to SIB and PCT to make a fair comparison between these
methods.

18

7. Experiments

This section presents experimental evaluation of analyzed approaches. We report the
results of SIB, LTLS-LR and PCT. For comparison, we also include results of two
well-known tree-based algorithms, LOMtree [13], and FastXML [12]. We have run
SIB, LTLS-LR and PCT on datasets used in [7], where one can find a comparison of
a set of multi-class and multi-label classification algorithms in terms of precision@1,
prediction time, and model size. The basic information about the datasets is given in
Table 1. Table 2 contains performance results of all methods. The results of LOMtree
and FastXML are taken from [7]. We do not report here other methods whose results
are reported in the cited paper (including PD-sparse introduced therein), since we
focus on graph- and tree-based methods, and other methods apply different approach.

We report precision@1 and the model size. We report precision@1 only since this
value was given in [7]. To compare the model size in a comprehensive way, we need to
remind several important issues. FastXML uses a sparse representation of the weight
vectors. LOMtree (implemented in vw[35]) and PCT use feature hashing, so their
model size can be treated as constant (i.e., can be set to all available memory; if it
is too small then many conflicts between feature weights occur, which deteriorate
their performance). The weight vectors of SIB and LTLS-LR are stored in dense
representation. Therefore, in case of SIB and LTLS-LR the model size is proportional
to d X E, where E is the number of edges (with probability estimators).

Comparing the results of SIB, LTLS-LR and PCT one can see the trade-off between
model size and predictive performance. With a growing size of the model, precision@1
also grows. The results of LTLS-LR are comparable to LOMtree and FastXML. On
Dmoz dataset LTLS-LR gets results close to LOMtree, using a much smaller model.
Results of PCT are competitive to FastXML.

The training and prediction times of all methods are not comparable due to
significant differences in implementation, therefore they are not reported. Moreover,
even training and prediction times of methods implemented in a similar manner cannot
be clearly compared on benchmark datasets, since they depend not only on the number
of labels, but also on the number of features and non-zero features in the dataset.
Therefore, to show the dependence on the number of labels of SIB, PCT and LTLS-LR,
we report results of an experiment on artificial data. Figure 4 shows the prediction
times as a function of the number of labels, from 24 to 23, scaled logarithmically. One
can notice, that in case of both LTLS-LR and SIB the dependence of the prediction
time on the logarithm of m is definitely linear, but with a different constant. The
prediction time of PCT does not depend linearly on the logarithm of m, but the
average prediction time is definitely sublinear in m.

19

T T T T T T
mLTLS-LR /

30 PCOT " .
. = SIB / .
w0 [Y e |
- P - W
g 20 [/ /.//l/ |
= ¥ i
S S
k3 15 = N
IS5 -
g 10 i’/ 8

5 /:/://:/j’l// |
- L

Figure 4. The prediction time, in seconds, of LTLS-LR (blue), PCT (green) and
SIB (magenta) on artificial data. The artificial datasets were of the same number
of instances and features. The numbers of labels m in the datasets were subsequent
powers of 2.

Table 1. Basic statistics of benchmark datasets.

‘ sector ‘ aloi.bin ‘ Dmoz ‘ LSHTC1

#examples 8658 100000 | 345068 83805
#features (d) | 55197 636911 | 833484 347255
#labels (m) 105 1000 11947 12294

8. Conclusions

We have introduced a general learning reduction technique that relies on a transfor-
mation of a multi-class classification problem to a structured prediction problem. In
this way we can control the time and space complexity. By using different codes and
dependence structures between elements of the code, we show the trade-off between
the predictive performance and the complexity. The preliminary experiments show
that algorithms based on the proposed transformation technique can achieve results
comparable with the state-of-the-art algorithms that are more costly in terms of time
and space. The future work will aim at finding a well-sounded theoretical framework
for the reduction of extreme classification to structured prediction problem.

20

Table 2. Precision@1 and model size [MB] of compared algorithms.

‘ SIB ‘ LTLS-LR ‘ PCT ‘ LOMtree ‘ FastXML

sector precision@1 | 0.8543 0.8616 | 0.8730 0.8210 0.8490

model size 6.43 12.06 16.00 17.00 7.00

aloi.bin precision@1 | 0.7697 0.8128 | 0.9088 0.8947 0.9550

’ model size 114 209 128 106 992

Dmoz precision@1 | 0.1819 0.2082 | 0.3263 0.2127 0.3840

model size 215 397 2048 1800 1500

precision@1 | 0.0914 0.0950 | 0.1524 0.1056 0.2166

LSHTC1 model size 272 525 1024 744 308
Acknowledgments

This work has been supported by the Polish National Science Centre under grant no.
2013/09/D/ST6/03917. Large-scale computations have been performed in Poznan

Supercomputing and Networking Center.

We would like to thank Wojciech Kottowski for helpful discussions and valuable

insights.

9. References

[1] Viterbi, A.J., Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 1967.

[2] Seshadri, N., Sundberg, C.E.-W., List viterbi decoding algorithms with applications.

IEEE Transactions on Communications, 1994.

[3] Doppa, J., Fern, A., Tadepalli, P., He-search: Learning heuristics and cost
functions for structured prediction. In: Journal of Artificial Intelligence Research
(JAIR), 2013.

[4] Jasinska, K., Karampatziakis, N., Log-time and log-space extreme classication. In:
Workshop on Extreme Classification at Neural Information Processing Systems
(NIPS), 2016.

[5] Dembczynski, K., Kotlowski, W., Waegeman, W., Busa-Fekete, R., Hiillermeier,
E., Consistency of probabilistic classifier trees. In: Furopean Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD). Springer-Verlag 2016.

(6]

21

Jasinska, K., Dembczynski, K., Busa-Fekete, R., Pfannschmidt, K., Klerx, T.,
Hiillermeier, E., Extreme F-measure maximization using sparse probability esti-
mates. In: International Confernece on Machine Learning (ICML), 2016.

Yen, I.LE.H., Huang, X., Ravikumar, P., Zhong, K., Dhillon, I., Pd-sparse : A
primal and dual sparse approach to extreme multiclass and multilabel classification.
In: International Conference on Machine Learning (ICML), 2016.

Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P., Sparse local embeddings for
extreme multi-label classification. In: Neural Information Processing Systems

(NIPS), 2015.

Yu, H., Jain, P., Kar, P., Dhillon, I.S., Large-scale multi-label learning with
missing labels. In: International Conference on Machine Learning (ICML), 2014.

Weston, J., Bengio, S., Usunier, N., Wsabie: Scaling up to large vocabulary image
annotation. In: International Joint Conference on Artificial Intelligence (IJCAI),
2011.

Mineiro, P., Karampatziakis, N., Fast label embeddings via randomized linear
algebra. In: FEuropean Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML/PKDD), 2015.

Prabhu, Y., Varma, M., FastXML: A fast, accurate and stable tree-classifier for
extreme multi-label learning. In: Knowledge Discovery and Data Mining (KDD),
2014.

Choromanska, A., Langford, J., Logarithmic time online multiclass prediction.
In: Neural Information Processing Systems (NIPS), 2015.

Niculescu-Mizil, A., Abbasnejad, E., Label filters for large scale multilabel classi-
fication. In: Workshop on Extreme Classification at the International Confernece
on Machine Learning (ICML), 2015.

Weston, J., Makadia, A., Yee, H., Label partitioning for sublinear ranking. In:
International Conference on Machine Learning (ICML), 2013.

Cissé, M., Usunier, N., Artieres, T., Gallinari, P., Robust bloom filters for large
multilabel classification tasks. In: Neural Information Processing Systems (NIPS),
2013.

Jasinska, K., Dembczynski, K., Consistent label tree classifiers for extreme multi-
label classification. In: Workshop on Extreme Classification at the International
Confernece on Machine Learning (ICML), 2015.

Vijayanarasimhan, S., Shlens, J., Monga, R., Yagnik, J., Deep networks with
large output spaces. In: Workshop contribution at International Conference on
Learning Representation (ICLR), 2014.

Shrivastava, A., Li, P., Improved asymmetric locality sensitive hashing (ALSH) for
maximum inner product search (mips). In: Uncertainty in Artificial Intelligence
(UAI), 2015.

22

[20]

[21]

[30]

31]

[32]

[33]

Fagin, R., Lotem, A., Naor, M., Optimal aggregation algorithms for middleware.
In: Principles of Database Systems (PODS). ACM 2001.

Stock, M., Pahikkala, T., Airola, A., De Baets, B., Waegeman, W., Efficient pair-
wise learning using kernel ridge regression: an exact two-step method. Computing
Research Repository (CoRR), 2016.

Indyk, P., Motwani, R., Approximate nearest neighbors: Towards removing the
curse of dimensionality. In: ACM Symposium on Theory of Computing, 1998.

Beygelzimer, A., Langford, J., Zadrozny, B., Machine learning techniques-
reductions between prediction quality metrics. In: Performance Modeling and
Engineering. Springer-Verlag 2008.

Beygelzimer, A., Daumé, H., Langford, J., Mineiro, P., Learning reductions that
really work. In: Proceedings of the IEEFE, 2016.

Dietterich, T., Bakiri, G., Solving multiclass learning problems via error-correcting
output codes. Journal of Machine Learning Research (JMLR), 1996.

Huffman, D., A method for the construction of minimum-redundancy codes.
Proceedings of the Institute of Radio Engineers (IRE), 1952.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J., Feature
hashing for large scale multitask learning. In: International Conference on

Machine Learning (ICML), ACM, 2009.

Dembczynski, K., Waegeman, W., Cheng, W., Hiillermeier, E., An analysis
of chaining in multi-label classification. In: Furopean Conference on Artificial
Intelligence (ECAI), 2012.

Mena, D., Montanes, E., Quevedo, J.R., del Coz, J.J., Using a* for inference in
probabilistic classifier chains. In: International Joint Conference on Artificial
Intelligence (IJCAI), 2015.

Beygelzimer, A., Langford, J., Lifshits, Y., Sorkin, G.B., Strehl, A.L., Conditional
probability tree estimation analysis and algorithms. In: Uncertainty in Artificial
Intelligence (UAI), 2009.

Fox, J., Applied regression analysis, linear models, and related methods. Sage,
1997.

Morin, F., Bengio, Y., Hierarchical probabilistic neural network language model.
In: Artificial Intelligence and Statistics Conference (AISTATS), 2005, pp. 246
252.

Lafferty, J.D., McCallum, A., Pereira, F.C.N., Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In: International
Conference on Machine Learning (ICML), 2001.

Tsochantaridis, Y., Joachims, T., Hofmann, T., | Altun, Y., Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research (JMLR), 2005.

23

[35] Langford, J., Strehl, A., Li, L., Vowpal wabbit, 2007 http://mloss.org/
software/view/53/.

Schedae Informaticae Vol. 25 (2016): 25-35

doi: 10.4467/2083847651.16.002.6183 | | I 2017
theoretical foundations |
of machine learning, Krakéw

Misclassification-Driven Sample Relabeling for Supervised
Kernel Principal Component Analysis

KRzYszTOF ADAMIAK, KRZYSZTOF SroT
Institute of Applied Computer Science, LédZ University Technology
Stefanowskiego 18/22, 90-924 LédZ, Poland
e-mail: krzysztof.adam.adamiak@gmail.com, kslot@p.lodz.pl

Abstract. Supervised kernel-Principal Component Analysis (S-kPCA) is a method
for producing discriminative feature spaces that provide nonlinear decision re-
gions, well-suited for handling real-world problems. The presented paper pro-
poses a modification to the original S-kPCA concept, which is aimed at improv-
ing class-separation in resulting feature spaces. This is accomplished by identi-
fying outliers (understood here as misclassified samples) and by an appropriate
reformulation of the original S-kPCA problem. The proposed idea is to replace
binary class labels that are used in the original method, by real-valued ones,
derived using sample-relabeling scheme aimed at preventing potential data clas-
sification problems. The postulated concept has been tested on three standard
pattern recognition datasets. It has been shown that classification performance
in feature spaces derived using the introduced methodology improves by 4%-16%
with respect to the original S-kPCA method, depending on a dataset.

Keywords: pattern recognition, feature extraction, kernel methods, supervised
kernel PCA.

1. Introduction

Common attributes of datasets corresponding to hard, real-world data classification
problems are presence of outliers, complex nonlinear and multi-modal character of

Received: 11 December 2016 / Accepted: 30 December 2016

26 Krzysztof Adamiak, Krzysztof Slot

class decision boundaries, uneven representation of classes and class’ modes as well as
noise and erroneous sample labeling. These problems have to be addressed by pattern
recognition procedures that aspire to be of practical use. In fact, all well-established
pattern recognition methods that have been developed so far, such as Support Vector
Machines (SVM [1]), neural networks (especially trained using deep-learning tech-
niques [2]) or probabilistic classifiers [3], attempt to handle the aforementioned prob-
lems. Some of these methods operate on raw data, but typically they assume object
representations in carefully selected feature spaces. Therefore, feature space deriva-
tion becomes an important element of pattern recognition procedure and an enormous
amount of research has been done in this field. Appropriate feature spaces facilitate
classification process, eliminate curse of dimensionality problem, thus reducing a risk
of classifier overfitting, but also, enable new insights into intrinsic object properties,
relations and dependencies that can be revealed by an adopted representation.

A variety of feature-space derivation strategies have been proposed so far. They
emphasize various aspects of data representation that are of importance for a given
application. Criteria used for derivation of new feature spaces range from maximiza-
tion of data scatter (PCA and its nonlinear extension - kernel PCA, abbreviated
henceforth using the term kPCA), through maximization of sample independence
(Independent Component Analysis [4], and its kernelized extension [5]) to maximiza-
tion of class discrimination (Linear Discriminant Analysis along with its kernelized
version and supervised versions of PCA). Other concepts behind a search for reduced
representations of samples involve for example preservation of original data structure
(as e.g. in Multidimensional Scaling or Iso-mapping).

The presented paper is concerned with a modification of Supervised Kernel Prin-
cipal Component Analysis (S-kPCA) [6], which is a supervised extension to the kPCA
(labeled samples are considered in feature space derivation), proposed in [7]. Kernel
PCA in turn generalizes the classical PCA in such a way that the discovered maxi-
mum scatter directions become nonlinear. Properties of kPCA address several basic
requirements crucial for classification of real-world data, such as low sensitivity to
outliers or nonlinear data mapping, which is crucial for solving linearly non-separable
problems. Atop on that, S-kPCA provides features that maximize correlations be-
tween samples and their class labels, thus eliminating one of the main drawbacks of
scatter-maximization based strategies.

Despite numerous advantages, S-kPCA is clearly not an ultimate solution to the
problem of feature space derivation. For difficult datasets it fails to provide perfect
data separation and one of the reasons behind its deteriorating performance is a lack
of diversification of individual samples’ role in building new data representation. This
issue is explored in research reported in the presented paper. We postulate to diversify
significance of different samples by their appropriate relabeling, so that samples that
may potentially pose classification problems become more important. We verify this
concept on three publicly available pattern recognition datasets and we show that
significant improvement (4%-16%, depending on dataset) over the original S-kPCA
approach can be obtained.

A structure of the paper is the following. We begin with a short review of related
concepts: kKPCA and S-kPCA. Then we present in detail the proposed sample relabel-
ing principles and the adopted feature space derivation procedure. Finally, we provide
results of experimental evaluation of the concept, where the modified S-kPCA method

Misclassification-Driven Sample Relabeling for Supervised Kernel PCA 27

is confronted with the original one and feature spaces derived for both approaches are
indirectly compared using classification performance results.

2. Related work

A basis for the presented research is laid out by an impressive development of kernel
methods for data classification and processing, which followed a success of the Support
Vector Classification (SVM) [8, 9, 10, 11, 12]. Theory of kernel methods has been
expanded also onto data preprocessing domain and several ’kernelized’ versions of well-
established concepts were formulated. These include concepts that are directly related
to the presented research: kernel Principal Component Analysis and its supervised
version S-kPCA.

Kernel Principal Component Analysis, proposed in [7], extends classical Principal
Component Analysis concept in order to identify nonlinear data scatter directions. A
concept of implicit problem-solving in high-dimensional, intermediate spaces, which
can be accomplished using kernels, provides a means for making the relevant compu-
tations feasible. An objective of kPCA is to find directions of the maximum variability
among samples x; that are projected to some high dimensional space, using a trans-
formation ®(.) (i.e. X; = ®(x;)). In other words, an objective is to find eigenvectors
V = [vg, V1, ...] of the projected data covariance matrix:

(X -M)(X-M)'V=AV (1)

where M is a matrix of mean-valued vectors m, computed for the projections in high-
dimensional space, and A is a diagonal matrix of eigenvalues. As eigenvectors lie in a
subspace defined by projected samples:

n—1
vi= Zaj(xj —m) = (X —m)a’,
j=0

premultiplying the equation (1) by the term (X — M) yields alternative formulation
of the eigenproblem:
(X -M)T (X - M)A = AA (2)

where A = [a°,al, ...] comprises vectors of coefficients that become a solution to the

modified eigenproblem. Observe, that only dot products are involved in computations
of the eigenproblem (2), so they can be replaced by kernels. Introducing a Gramm
matrix, with elements G; ; = K (x4,%;), where K is some kernel function, centered in
high-dimensional space, one can rewrite (2) in a compact form:

GA = AA (3)

A solution to (3), which can be found for reasonable amounts of samples, defines
directions of the maximum variability in a high-dimensional space and can be used

28 Krzysztof Adamiak, Krzysztof Slot

for projecting unknown samples:
(®(z) —m)Tv! = (®(z) —m)T (X —m)a’ = |K(z,%0),...K(z,%x,_1)| a" (4)

As it can be seen, projections onto each eigenvector v; can be determined in the
original, low-dimensional space, using kernel operations and the computed coefficient
vectors a’.

The second concept relevant to the presented paper is a supervised version of
kPCA. The proposed idea is to use Hilbert-Schmidt Independence Criterion (HSIC)
[13] as an objective function that is to be maximized. HSIC measures a level of
cross-covariance between samples and their labels:

C.y=EX-m,)(Y-m,)" = E(XH)(YH)" (5)

where X is a matrix of input samples with a mean vector m,., Y is a matrix of labels,
with their mean m,, and H is a centering matrix. HSIC uses a Hilbert-Schmidt norm,
which, in essence, aggregates squared entries of the cross-covariance (5). It can be
easily shown that this can be expressed as:

where tr denotes the trace of a matrix and k is a scaling factor. As the criterion (6)
involves dot products, one can introduce kernels: on input samples - K = [k(x;,x;)]
and on labels - L = [I(y;,y;)], and rewrite the criterion in the form:

HSIC =k - tr(KHLH) (7)

An objective of S-kPCA procedure is to find such a transformation matrix U of
original samples x, i.e.:
x’=Ux

which, after plugging x’ into (5) provides maximization of the criterion (7). This can
be seen as searching for such a combination of original samples that ensure data trans-
formations (through kernel functions) that maximize correlation between samples and
their labels.

3. Misclassification-driven sample relabeling

The original S-kPCA procedure is not addressing an issue of diversifying sample labels
and is not exploring its impact on discriminative properties of a resulting feature
space. By default, all class samples are treated evenly: for example, for a two-class
problem (samples belong either to class A or class B), each sample x is labeled with
a two-element vector y,; with binary entries:

1 0
VSiG.A y: = |: 0 :|) vSJGB y; = |: 1 :| (8)

Misclassification-Driven Sample Relabeling for Supervised Kernel PCA 29

where A -class sample label is linked to its class by the first component of the label
vector and B-class samples, by the second component.

As the criterion (6) that underlies feature space derivation focuses on sample-
label correlation, it is evident that varying the label affects the relevant computations
and leads to a different solution. One can observe that by varying numerical label
representations one can modify sample-class correlations in several possible ways.
For the considered two-class problem, where labels are represented by two-element
vectors, one can vary any of the two entries. Moreover, one can easily interpret such
changes. An increase in a value of sample’s own’ label vector component (the first for
A -class samples and the second for B-class samples) makes a class-sample correlation
stronger, whereas decreasing this value - weakens the correlation. This way, one can
diversify a significance of samples in a process of constructing a novel feature space.
In addition, one can observe that a sample can be forced to negatively correlate with
the opposite class. This can be accomplished by substituting the ’zero-correlation’
component of the label vector (the second one for A -class samples and the first one for
B-class samples) with a negative value. As a result, every sample would get individual
labels that can be represented as:

a? 4
V&EA Yi = |: 7&’@ :|) vsjEB y; = |: 7;)7.7, :| ’ (9)

where a.., b.. are positive real numbers and the superscripts p and n identify ’positive’
and 'negative’ correlation coeflicients.

The presented concept of sample relabeling seems a viable way to modify a role
of different samples in derivation of new feature spaces. In particular, one can apply
this mechanism to increase significance of samples that are harder to be correctly
classified over significance of samples that pose no serious classification problems.

To improve discriminative properties of feature spaces derived using S-kPCA con-
cept, one needs to elaborate rules that enable reasonable sample relabeling, i.e. that
enable determining for which samples label alterations should be made and what
should be a magnitude of such an alteration. We propose to use training sample
classification results statistics as the basis for both determination of samples to be
affected and determination of amounts of label changes.

The proposed procedure has been schematically depicted in Fig. 1. Original
dataset is split into two parts: training/validation and test sets. Feature space deriva-
tion is performed only on samples from the former one and begins with its random
split into temporary training and temporary test subsets. Next, the original S-kPCA
procedure, which assumes binary class labels (8) is executed on the temporary training
subset, followed by data classification performed in the derived space using Gaussian
Mixture Model (GMM) classifier. All misclassified samples are then recorded and
saved for a future use. The GMM classification method has been chosen, as it has a
little in common with the adopted kernel-based feature space derivation methodology
and can therefore be considered as an unrelated tool for feature space evaluation. For
the current split of the training set, classification is performed using a k-fold cross
validation scheme and once it is completed, the whole procedure is repeated n-times
for another n random splits of the training set into new temporary training/test
parts. After completion of this iterative procedure, misclassification percentage is
determined for each sample. The computed coefficients are used as a basis for sample

30 Krzysztof Adamiak, Krzysztof Slot

‘ Original dataset ‘

¥
‘ Training / validation set ‘

Testset

hd

Temporary Tempaorary
training set test set

S5-kPCA

Data classification

k-fold cross-validation,
n dataset splits

v

| Statistical analysis |
v

| Sample relabeling |
v

| S-kPCA |

- r

| Final data classification |

Figure 1. Block diagram of the proposed feature space derivation procedure.

relabeling. Assuming that some i—th sample from a class A has been misclassified
m—times, the corresponding correction coefficient is determined:
m

P = a— 1
¢ = o (10)

where « is a positive constant that controls a magnitude of label updates.
The coefficient (10) is then used to produce the ’positive’ component of the sample
label vector:

Cl]; =14¢ (11)
or the 'negative’ component (updates for samples from a class B are analogous):
ay = —c¢; (12)

Having the samples relabeled, another S-kPCA procedure is executed, producing
the resulting feature space for classification of samples from the test set. Next, clas-
sification result is recorded and the whole procedure is repeated p-times for other
random splits of the original dataset.

4. Experimental evaluation of the proposed concept

To verify the proposed concept, a series of experiments (using Python’s sckit package
[14]) on seven different pattern recognition datasets: Digits, Tonosphere, Pima Indian

Misclassification-Driven Sample Relabeling for Supervised Kernel PCA 31

Table 1. Datasets used in experiments.

’ Database H Digits \ Tonosphere \ Pima \ Glass \ E-Coli \ Parkinson \ Heart ‘

Classes 10 2 2 6 5 2 5
Attributes 64 34 8 10 8 23 14
Samples 1797 351 768 213 327 195 297

Diabetes, Glass, E-coli, Parkinson’s Disease [15] and Cleveland Heart Disease [16]
(all datasets available at UCI repository [17]) were performed. Dataset highlights
are shown in Table 1. Three of these datasets correspond to binary classification
problems, so that sample labels are represented by two-element vectors, as shown in
(9). For the remaining datasets, the presented sample relabeling approach requires
only a straightforward modification: label vectors are composed of multiple entries
that get appropriately updated during the validation procedure.

Three different label alteration scenarios were considered during the experiments:

e Only positive components of sample’s label vector (i.e. a? or b depending on
sample’s class) were being updated according to (11)

e Only negative components of sample’s label vector (i.e. a}' or b') were being
updated according to (12)

¢ Both negative and positive components were modified

For each dataset, a procedure explained in the previous Section was executed. In
each case we assumed a 5-fold cross validation (k=5), the inner loop (i.e. estimations
of misclassification rates for a given split of the original dataset) was executed 100
times (i.e. m=100) and 100 classifications were made (p=100) to asses an overall
classification performance for each method. Throughout all experiments, a Gaussian
kernel was used in S-kPCA procedure:

k(xi,%x;) = exp (=7 - |[xi — x([%) (13)

where ||.|| denotes a distance between samples and v was chosen using the grid-search
method [18].

An objective of the first phase of experiments was to compare the three adopted
sample relabeling scenarios. Classification experiments (GMM method was used for
data classification both in the validation and in the test step) were performed on the
first three databases and the results, plotted as a function of the parameter « € [0..2]
(10) have been shown in Fig. 2. The experiments have been summarized in Table 2.
For comparison purposes, performance evaluation of GMM classification of raw data,
as well as GMM classification in a space derived using the original S-kPCA procedure
(for identical splits into training and test parts) were provided. One can observe that
classification in feature spaces derived using the proposed strategy outperforms the
reference methods: classification made on raw data and classification made in a space
derived using the original S-kPCA. Also, it can be seen that a combination of both

32 Krzysztof Adamiak, Krzysztof Slot

[%] Method 1 [%] Method 2 [%] Method 3
95

90 P
g50eaa-0-0-00Loy o ots-0-00Sgo aeeie asw'w. 90 W’ R

80
75 75
70 70
65 65

° —e-Digits 60 —e-Digits 60 —

lonosphere - lonosphere 55 -0-J .

> 50 Pima 50 onosphere
Alpha Pima Indians Alpha Indians Alpha Pima Indians

Diabetes Diabetes Diabetes

Figure 2. Average classification performance as a function of varying label update
magnitudes for all considered scenarios and datasets.

Table 2. Classification performance using Gaussian Mixture Models (in percent)
with 95% confidence intervals

Database Digits Tonosphere Pima
Raw data | 76,2 3.6 | 724 £ 3.2 | 63.9 + 4.7
S-kPCA 8.5 +£ 1.8 | 72.1 £5.3 73.3 £ 2
Scenario 1 | 86.7 = 1.9 | 91.4 + 2.6 72.0 £ 2
Scenario 2 | 87.5 + 2.1 912+ 3 72.0 £ 24
Scenario 3 | 93.2 £ 09 | 93.0+2 | 76.0 £ 1.8

types of updates, i.e. the last scenario used for label alterations, provides the most
noticeable gain, so we consider this strategy to be the best one.

An improvement in classification performance is statistically significant for the two
datasets: Digits and Ionosphere. In case of the last dataset (Pima Indian Diabetes),
although average classification results are better than for the original S-kPCA, large
variations of individual results do not allow making any definite statement on the
proposed method’s superiority. On the other hand one can observe that Pima dataset
samples have relatively low initial dimensionality, so that dimensionality reduction in
that case may not be necessary at all.

As sample relabeling involving alterations both to positive and negative label
vector components has been found to provide the best results, this approach has
been adopted in the following experiments. This time, classification performance of
three different procedures, involving no dimensionality reduction (raw data classifi-
cation), dimensionality reduction with original S-kPCA and dimensionality reduction
with sample relabeling using the adopted third scenario, were done for all considered
datasets. GMM was used as the classification strategy in validation phase, whereas
test set samples were classified with either GMM, linear SVM and k-NN (k = 5 was
used) classifiers.

Performance comparison results are depicted in Fig.3, where the best performing
a value for each dataset (o € [0.3...1.1]) was used for sample relabeling.

A few observations can be made from the presented results. The most important
from the point of view of the proposed concept is that the proposed sample relabeling
always results in feature spaces that have better class discrimination properties than

Misclassification-Driven Sample Relabeling for Supervised Kernel PCA 33

95

85

100

lonosphere

lonosphere

lonosphere

Pima

Pima

Pima

Glass

Glass

Glass

E-Coli

(a)

E-Coli

(b)

E-Coli

()

M Relabeling
= RAW
S-KPCA

Parkinson’s Heart

M Relabeling
B RAW
S-KPCA

Parkinson’s Heart

M Relabeling
B RAW
S-KPCA

Parkinson’s Heart

Figure 3. Maximum classification rates for different datasets and the three con-
sidered test-set classification methods: GMM (a), 5-NN (b) and linear SVM (c).
'Relabeling’ denotes the proposed approach, 'RAW’ denotes classification of original
data and ’S-KPCA’ denotes classification with the original method.

34 Krzysztof Adamiak, Krzysztof Slot

the ones produced by the original S-kPCA. In each case, classification performance
improves, however, in several cases this improvement is not statistically significant.
Secondly, it seems that classification strategy adopted in validation phase (GMM)
implies the best improvements if the same classification strategy is used in the test
phase (differences between results obtained for the sample-relabeled and the original
S-kPCA are the most salient). Finally, performance for different datasets depends on
the adopted classification strategy.

5. Conclusion

A strategy for improving class separation properties for feature spaces derived using
Supervised kernel Principal Component Analysis has been presented in the paper. It
has been shown that appropriate modifications to sample labels, which diversify their
significance in derivation of target space features, result in increased data classification
performance and that this gain can be substantial for some datasets. Although the
concept needs to be thoroughly verified using many other existing data sources, we
believe that the observed tendency will hold, improving significance of the S-kPCA
concept.

One needs to bear in mind, that PCA-based data recognition methods are inher-
ently computationally complex, which limits their use in time-critical applications.
This also applies to S-kPCA and to the proposed modification. On the other hand,
the considered data preprocessing offers several crucial advantages - it reveals struc-
tures that exist among data and that can be relevant for class-discrimination, reduces
a risk of classifier overfitting and reduces sensitivity to bad class examples.

6. References

[1] Burges, C.J., A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 1998, 2(2), pp. 121-168.

[2] Bengio, Y., Learning deep architectures for ai. Foundations and Trends in Ma-
chine Learning, 2009, 2(1), pp. 1-127.

[3] Reynolds, D., Gaussian mizture models. Encyclopedia of biometrics, 2015, pp.
827-832.

[4] Comon, P., Independent component analysis: a new concept? Signal Processing,
1994, 36(3), pp. 287-314.

Misclassification-Driven Sample Relabeling for Supervised Kernel PCA 35

[5]

(6]

[15]

[16]

Bach, F.R., Jordan, M.I., Kernel independent component analysis. Journal of
Machine Learning Research, 2002, 3, pp. 1-48.

Barshan, E., Ghodsi, A., Azimifar, Z., Jahromi, M.Z., Supervised principal com-
ponent analysis:visualization, classification and regression on subspaces and sub-
manifolds. Pattern Recognition, 2011, 44, pp. 1357-1371.

Scholkopf, B., Smola, A., Miller, K.R., Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 1998, 10, pp. 1299-1319.

Hofmann, T., Scholkopf, B., Smola, A.J., Kernel methods in machine learning.
The Annals of Statistics, 2008, 36(3), pp. 1171-1220.

Smola, A.J., Scholkopf, B., Learning with Kernels. MIT Press, 2002.

Wang, M., Sha, F., Jordan, M.I., Unsupervised kernel dimension reduction. Proc.
of Conf. Advances in Neural Information Processing Systems, 2010, 23, pp. 2379—
2387.

Mika, S., Rétsch, G., Scholkoph, W.J., Miiller, K.R., Fisher discriminant analysis
with kernels. Proc. of IEEE Conf. Neural Networks for Signal Processing, 1999,
pp. 41-48.

Baudat, G., Anouar, F., Feature vector selection and projection using kernels.
Neurocomputing, 2003, vol. 55, pp. 21-38.

Song, L., Smola, A., Gretton, A., Bedo, J., Borgwardt, K., Feature selection via
dependence mazximization. Journal of Machine Learning Research, 2012, 13, pp.
1393-1434.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 2011, 12, pp. 2825—
2830.

Little, M.A., McSharry, P.E., Roberts, S.J., Costello, D.A., Moroz, I.M., Ex-
ploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder
Detection-6. 12 2011, .

Hungarian Institute of Cardiology. Budapest: Andras Janosi M.D., University
Hospital Zurich, Switzerland: William Steinbrunn M.D., University Hospital
Basel, Switzerland: Matthias Pfisterer M.D., V.A. Medical Center Long Beach
and Cleveland Clinic Foundation:Robert Detrano M.D. Ph.D., Heart Disease
Data Set. [online].

Moshe, L., UCI machine learning repository, 2013.

Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S., Choosing multiple param-
eters for support vector machines. Machine Learning, 2002, 46(1), pp. 131-159.

Schedae Informaticae Vol. 25 (2016): 3747

doi: 10.4467/20838476S1.16.003.6184 | | I 2017
theoretical foundations |
of machine learning, Krakow

On Certain Limitations
of Recursive Representation Model

STANISLAW JASTRZEBSKI, IGOR SIERADZKI
Faculty of Mathematics and Computer Science
Jagiellonian University, Lojasiewicza 6, 30-348 Krakéw, Poland
e-mail: {stanislaw.jastrzebski, igor.sieradzki}Quj.edu.pl

Abstract. There is a strong research effort towards developing models that
can achieve state-of-the-art results without sacrificing interpretability and sim-
plicity. One of such is recently proposed Recursive Random Support Vector
Machine (R*SVM) model, which is composed of stacked linear models. R2SVM
was reported to learn deep representations outperforming many strong classi-
fiers like Deep Convolutional Neural Network. In this paper we try to analyze
it both from theoretical and empirical perspective and show its important limi-
tations. Analysis of similar model Deep Representation Extreme Learning Ma-
chine (DrELM) is also included. It is concluded that models in its current form
achieves lower accuracy scores than Support Vector Machine with Radial Basis
Function kernel.

Keywords: support vector machines, random recursive support vector machine,
extreme learning machine, representation learning, stacked generalization

1. Introduction

Successes of deep architectures often comes at the cost of interpretability and fitting
complexity [1, 2]. Popular techniques used to battle this problem include random
projections, which are a basic building block of Extreme Learning Machines [3, 4],

Received: 11 December 2016 / Accepted: 30 December 2016

38

Figure 1. Visualization of R2SVM model on two moon dataset. Random projections were
manually adjusted.

where before classification data is projected into a higher dimensional space using
random non-linear transformation. Such classifiers are stacked to form a deep archi-
tecture that can achieve state of the art results [5]. In this paper we analyze Random
Recursive SVM (R2SVM) model proposed by Vinyals et al. [6], which recursively
transforms data using predictions from linear layers. We will also cover similar model
called Deep Representation Extreme Learning Machine (DrELM) [7]. Both models
are following “stacked generalization” introduced by Wolpert et al. [8].

R2SVM uses as linear classifier Support Vector Machines (SVM), model proposed
by Vapnik [9], one of the most successful classifiers of the last decade mostly thanks to
its well motivated regularization method in the linear case and its efficient delineariza-
tion. While shallow learners, like SVM, are usually outperformed by Deep Learning
models, combining strengths of principled shallow models and Deep Learning ones is
an active field [10].

The most important advantages of R2SVM and DrELM include their interpretabil-
ity and scalability, while at the same time learning deep representation, as reported
by authors of the models. Indeed both linear SVM and non-linear ELM can be fitted
in O(N) time and only single fit is performed for each layer. Both models optimize
a convex objective, that has a global minimum. The original papers did not include
theoretical discussion of the obtained results and its limitations, which are the main
topic of the paper.

R2SVM and DrELM

First we introduce the model in an informal discussion. R2SVM consists of multiple
layers transforming recursively input dataset. Let’s focus on the binary case, where
each layer fits a hyperplane separating the dataset into two subspaces. The two
groups are then moved in random opposite directions proportionally to distance of
the hyperplane. The main idea behind the model is to separate those groups, which
should improve classification performance at later stages. Transformed dataset with
applied non-linearity (which prevents some degeneration of the method) is passed to
the next layer.

Formally let’s consider training dataset {(x;,v;)},, where x; € R? is a feature

39

vector and y; € {1,2,..., K} is class label. R2SVM is a recursive model, where each
layer transforms dataset using all previous outputs. Let’s denote X; € RV as
representation output of the i*® layer (see Fig. 2), O; € RN*K ig a vector of distances
from hyperplanes and W7 € R¥ *d is a matrix containing random vectors as rows
that maps output of i" layer to input of j** layer. Each random vector is drawn from

standard normal distribution. Then we can write

Xin=0|X+a) OW!/|, (1)

Jj=1

where X is the original dataset, « controls size of applied transformation and o is
element—wise sigmoid, see Fig. 2 for diagram.

In the case of DrELM we have a slight modification. Most importantly classifier
used is Extreme Learning Machine (with linear activation function). Authors also
propose to use only the last output (O;):

Xiy1 =0 (X+aO;W;), (2)
where o is a sigmoid function.
[P
T T [Output
R?Layer : R?Layer : s R?Layer |5 Feature
0 T
N
1 Phe AN
)« | . _
T e e e " S
! 1
! 1
! 1
O1,..i1 % 01|02 |04 > O1, i
1
1
a) 1 / :
! 1
Xi 4:* M W + o Xit1
1
1
DR DR
X

Figure 2. a) Each R? layer calculates new transformation based on the output of
the previous layer. b) Model consists of repeated R? layers.

2. Theoretical analysis

To simplify notation we will use R®M to denote both R?SVM and DrELM models,
where M denotes any classifier, so DrELM is denoted as R?ELM. We start the dis-
cussion with analysis of R?M behavior on the well-known spiral dataset. Despite its

40

simplicity model struggles to find correct random projections. We have exhaustively
searched possible hypothesis space of a three layered R2SVM and concluded that this
dataset cannot be separated by the given model'. For simpler two-moon dataset ap-
proximately 1% of the runs separate the classes. Interestingly replicating dimensions
(by stacking copies) of the datasets drastically improves performance, see Fig. 3.

Figure 3. Visualization of 3 layered R2SVM. a) Best run without replicating dimensions.
b) Best run with replicated dimensions.

In this analysis we focus on model using only previous layer predictions, as in
R?ELM model. It simplifies analysis and does not decrease performance as is both
conjectured by R2ELM authors and proven empirically in this paper.

Recall that transformation used in R®M for any linear M can be written as
Xis1 =0 (X+a0,W;) = (X+a Y (x,vi)) +b=0 (X +T(x)),
where by T'(x) we denote displacement function applied to vector given by T'(x) =

Z£1(<x,vi> + b;)w;. Note that we can write it as T'(x) = x (Zfil viwiT) + b.
Consequently

K
T(x) =x (Z viwiT> +b=xA+b.
i=1

For linearly independent hyperplanes rank(A) = K. Thus this displacement operator
is a degenerated affine transformation. Whole layer could be interpreted as a two layer
neural network with skip connections or a single layer neural network, see Fig. 4.

1 We tested all hyperplanes with a rotation step. Original paper reported the experiment using
a deeper R2SVM.

41

(=X

Figure 4. Interpretation of R?SVM for binary case. a) As 2 layered neural network with
skip connections. b) As fully connected single layer neural network (x + T'(x) = x(I+ A)).

2.1. Classifier importance

One of our claims is that R2M performance is characterized by the intersection of
found hyperplanes. This should be clarified by the following observation. Let Ty, be
a transformation defined by hyperplanes, V1, ..., Vi and random vectors wy, ..., wg.
From now simplified notation is used, where V; is it" hyperplane and v; is its normal.

Observation 1 Let Vi,..., Vi and V{,..., V], denote hyperplanes then
ﬂi V.= ﬂz Vi/ = EIW/, such that TV’,W = TV,W"

Proof. Let’s simplify by skipping bias in the equation for T' (which is equivalent to
adding constant dimension to x), then

§ T
TV,W = VW, .

First we show that that kerT" = (), V; if random vectors W are linearly independent.
Left inclusion is obvious. Assume that x € ker7 and x ¢ (), V;, but that implies
doy; - Efil a;w; = 0. That would mean that random vectors W are not linearly
independent. If the vectors vy, ..., vk are linearly independent then dim (ker Ty w) =
N — K, because T'(x) = 0 < Vieq1,.. .k} X L v4. In general we have dim (ker Ty,w) <
N — K. We choose basis for V {e1,...,er},L < K. Ty, w = Ty,w- is equivalent to
the set of N x L linear equations with N x K parameters:

Ty w(e) =Tywi(e;), i=1,...,L

which has an unique solution. O

The observation suggests that multiclass classification is not crucial, as one can for
instance rotate all hyperplanes or perform orthogonalization and still be able to find
an equivalent model. The observation does not include any results on distribution of
W and because of that only hints at this possibility that doing multiclass classification
in the middle layers might not be optimal.

42
2.2. Model interpretation

In this section we derive an interpretation of the model. Let x € X is a data point.
Let Ty,w(x) = Ax + b be affine displacement operator. Clearly kerT is also an
affine subspace, as it is intersection of K hyperplanes (affine subspaces). Denote by
Pyer 7(X) a projection onto this space, then

T w (%) = Tvw (X — Peerr(X)).

We can now easily simplify further discussion. Let us first fix origin inside ker T’
and then subtract projection as follows: y = x — Pier 1y, - We can now assume that
space is a vector space, in which of course ker T” is a linear subspace.

Denote by uy,...,ux transformed vectors vi,...,vi. Let B = span(U) be sub-
space spanned by uy,...,ux. We can proof the following observation

Observation 2 Let U* be set of optimally separating hyperplanes in B. Then exists
W/ such that TU,W = TU*A,W’

Proof. All vectors from U* are linear combinations of vectors from U, u} € U* &
u; = Zle aju;. From this follows that (), U; = (), US. We can find W' using
Observation 1. O

Observation 2 suggests that if B subspace is well separable, then model should
perform considerably well, given that W’ is not degenerated. Finding easily separable
B space is unfortunately not equivalent to maximizing multiclass accuracy. One can
for instance simply add new hyperplane that is not a good classifier, but divides
space in a useful way. If the dataset is almost linearly separable then if V' consist of
hyperplanes separating classes then B space is likely to be linearly separable; however
the opposite might not hold. This suggests that the method might not be well suited
for datasets for which linear classifiers performs poorly.

It seems also natural that both models should work well when data manifold has
smaller dimensionality than space, as it makes more likely that random projections
are separating classes. We pose the following hypotheses, that are validated in the
empirical section:

Hypothesis 1 R?M with L layers performs weakly if at any of the 1,..., L —1
layers data representation leads to weak linear classifier.

Hypothesis 2 RZM work better if dataset resides on lower dimensional manifold.

3. Empirical analysis

Tested models were Random Recursive Support Vector Machine (R2SVM), Deep
Representation Extreme Learning Machine (R2ELM), Support Vector Machine with

43

Radial Basis Kernel (SVM+RBF), Extreme Learning Machine with Sigmoid Kernel
(ELM+SIG) and Linear Support Vector Machine (SVM).

Additionally we added randomized version of R2SVM called Fixed Prediction
R2SVM (R2?1+SVM), where middle layers are using constant prediction equal to one,
i.e. O; = 12. By adding this model we evaluate if RZSVM is not just using additional
space besides dataset manifold to increase separability. Interesting results reported
in theoretical section inspired us to add modifications of R?1+SVM and R?SVM, in
which models use tripled version of the dataset (R21+SVM, R2SVM).

3.1. Evaluation

We conducted our experiments on datasets taken from UCI repository [11] and LIB-
SVM dataset repository [12]. Summary of the datasets is presented in Table 1. To
make sure we make a fair comparison we tested extensive grid of parameters for
R2SVM and R?ELM. The grid tested all combinations (640) of the following param-
eters:

1. recurrent: If set to true model is reusing all the previous predictions as in
R2SVM model.

2. scale: If set to true model is performing scaling in every layer.

3. fit: If set to true model performs approximate regularization parameter C fitting
in each layer.

4. a: Controls size of applied transformation. 8 values ranging from 0.1 to 2.0.
5. depth: Depth of the model. 10 values from 1 to 10.

Code used for experimentation is accessible online®. Experiments were conducted
in Python using scikit-learn and LIBSVM package [12][13]. All of the experiments
were done using 5-fold stratified cross validation. Every experiment for RZSVM mod-
els (RZSVM, R2SVM, ...) is repeated three times (with different seed) and average
accuracy of the best performing set of hyperparameters is reported.

3.2. Results

Results are reported in Table 2. We would like to focus on several outcomes. Ex-
periments clearly confirm that R2M is weaker or comparable to SVM-+RBF model
in classification accuracy. This does not contradict results reported by authors of
the model, as their work did not include extensive testing. Additionally, datasets

2 Similar results were obtained by several other random versions of R2SVM, for instance using
random hyperplanes.
3 https://github.com/gmum/r2-learner

44

name N d K M name N d K M
australian 690 14 2 1 liver 345 6 2 3
bank 1372 4 2 3 pendigits 10992 16 10 9
breast cancer 683 10 2 1 satimage 10870 36 6 6
crashes 540 20 2 1 segment 2310 19 7 7
diabetes 768 8 2 2 sonar 208 60 2 28
fourclass 862 2 2 2 splice 1000 60 2 55
german 1000 24 2 3 svmguide2 391 20 3 15
glass 214 9 6 6 svmguide4 612 10 6 1
heart 270 13 2 3 vehicle 846 18 4 6
indian 583 10 2 3 vowel 990 10 11 8
ionosphere 351 34 2 24 wine 178 4 3 2
iris 150 4 3 2

Table 1. Experiments datasets summary. N — number of examples, d — number of dimen-
sions, K — number of classes, M — manifold dimension estimation using PCA.

tested in this work are characterized by rather low dimensionality and high number
of classes, which differs from set tested in the original papers. It is also consistent
with our theoretical understanding of the model.

Both hypotheses are confirmed by the empirical results. Hypothesis 1 specifically
stated that R?M performance is correlated with some measure of weakness of linear
classifier. It is clearly visible for highly linearly non—separable datasets, e.g. glass or
vowel. We did a heuristic hypothesis test by measuring correlation of *<2VMEREE 55

2

R<SV M

ACCSVM —ACCSVMIREE where acc is the best accuracy on given dataset. We obtained
aCCSVM+RBF

approximately 0.9 Spearman’s correlation coefficient, which supports the hypothesis.

Second hypothesis can be validated similarly, we calculate correlation between
acCpa gy, and difference between dataset dimensionality and manifold estimation.
We report Spearman’s correlation coefficient equal to 0.7, which also confirms corre-
lation, however weaker.

Additional result is the fact that tripling dataset dimensionality by replicating
data improves accuracy. It is equivalent to increasing hidden layer sizes in neural
network interpretation of R?M model. In that case R?214+SVM model, which is not
fitting linear models in the middle layers, is performing comparatively to R2SVM.

45

‘petIodal ST UOIIRIASD pIepueR)s pue AJeInode [l ‘siuswWLIddxe o) JO s3[Nsal urejy *g 9[qel,
10°0F wwo 10°0F ﬂwo 100+ ﬂwo 10°0F ﬂwo 10°0F mwo 10°0F wwo v0'0 ¥ N.w.c 10°0F mwo T0°0F mwo @:T/P
10°0F 2.0 000 F 00T 10°0F 180 woF 6F0 woF JF0 10°0F 660 10°0F €80 10°0F $G°0 woF 790 [omoA
10°0F 780 10°0F G8'0 10°0F Z8°0 oF Q)0 woF Q)0 00F 98'0 10°0F Z8°0 10°0F 08°0 10°0F 18°0 EIBIUEXN
10°0F 780 10°0F 180 woF 06'0 woF ¢) 0 10°0F 18°0 10°0F 180 10°0F 9.0 10°0F 08°0 oF GR(0 ﬁw@mdwﬁbwm
WoF - pg0 =¥ g8 U0F €80 0 g®0 0T R0 o0 g®0 °F g0 0F F80 °F €80 gopmauias
10°0F 880 z00 ¥ QQ"() 10°0F 1870 10°0F 18°0 00T (080 10°0F 88'0 10°0F 9.0 10°0F Z8°0 10°0F 18°0 wo:Qm
10°0F ¥8°0 100F 780 10°0F 9.0 10°0F 180 00F 9270 g00F 680 10°0F €80 10°0F 2270 woF G0 Jeuos
10°0F ¥6°0 10°0F 160 o F 260 woF €60 w0oF €60 10°0F 160 10°0F €6°0 10°0F ¥6°0 woF 9670 Juow3os
10°0F 06°0 000 F 26°0 10°0F 76°0 woF)80 woF 780 10°0F €6°0 10°0F 68°0 10°0F 88°0 oF 680 wwﬁaﬁﬁm
10°0F 260 10°0F 00°T 10°0F 66°0 oF 60 0oF €60 00oF (0'L 10°0F 260 10°0F 180 0oF 60 mﬁwzugmm
10°0F 12°0 T0°0F ¢L0 10°0F 0.0 oF 990 10°0F 12°0 v0°0 F G20 T0°0F 720 10°0F 69°0 oF 040 IOAT]
T0°0F wmo 10°0F N.mwo 10°0 + wm.o 10°0F N.@O 10°0F mmo €0°0 F w@.c z0'0 ¥ w@.c 10°0F @@O T0°0F N.@O mﬁhm
10°0F 260 100F €6°0 10°0F 68°0 10°0F 160 woF 680 z00 ¥ 96°0 10°0F 160 10°0F 7670 0¥ 60 wuwﬂamOEOM
10°0F ﬁho 10°0F NNO 10°0F ﬁho 10°0F ﬂho 10°0F NNO 10°0F NBO 100 + Mbc 10°0F NNO 10°0F MND Eﬁﬂoﬁm
10°0F G0 10°0F G8'0 10°0F Gg'0 oF GR(woF FQ0 10°0F G¢R'0 10°0F €8°0 000 F Gg°'0 woF R0 1197
10°0F Gc9'0 10°0F 2.0 10°0F 69°0 oF (G0 woF 790 g00F @20 10°0F 12°0 10°0F $9°0 woF 90 mm,ﬁw
10°0F 2.0 T0°0F 92,70 10°0F €20 woF ¢) 0 woF 9,0 10°0F 9.0 T0°0F GL0 000F 22°0 woF)0 ueuLIog
10°0F 220 o000 F 00°L T0°0F 18°0 T0°0F 72°0 T0°0F 220 00’0 F 00°T1 T0°0F 660 T0°0F QL0 T0°0F 6L°0 SSR[OINOJ
oer - LL0 to0F 8.0 0¥ 9.0 teoF 9.0 T0F 8L0 00T 8L0 fe0F 8LT0 0T LL°0 T 8L0 SajeqRIp
10°0F G6°0 10°0F 96°0 10°0F C6°0 woF G0 woF 9670 z00F 96°0 10°0F €670 10°0F C6°0 woF G0 soyseId
00F 260 10°0F 160 10°0F 160 woF)60 woF)60 10°0F 160 10°0F 160 10°0F 160 woF)60 hwodﬁo\umﬁwpﬁ
000 F QO'T °°F 00°T 0T 00°T OF 00T o 660 °°°F 00°T °°°F 00°T 0¥ 260 o°F 00°T ueq
10°0F 98°0 10°0F 98°0 10°0F 180 0F 980 0¥ 980 10°0F 180 200 F QR0 10°0F 180 oF)80 uerferjsne
INAS+Tzd AGU+INASK INASZY INASHTH INAS ATH+INAS DIS+INTH NTH Y INASH josejep

46

4.

Summary

In this paper we analyzed rigorously R?SVM and R?ELM models both from theoreti-
cal and empirical point of view. Basing on our theoretical observations we have proven
empirically two hypotheses, stating that R2SVM and R2ELM perform weakly if any
of the layer data representation leads to weak linear classifier and that R2SVM and
R?ELM rely on dataset residing on a much lower dimensional manifold. In summary
it suggests that RZSVM and R?ELM might not be always learning useful representa-
tions, which is further confirmed by weak results in comparison with Support Vector
Machine with RBF kernel. Future research should focus on making sure R2SVM is
more broadly applicable.

Acknowledgements

We would like to thank Wojciech Czarnecki, member of our research group, for support
and guidance that he continuously expressed during our work on this paper.

1]

2]

13]

[4]

[5]

[6]

References

Bengio, Y., Learning deep architectures for Al Foundations and Trends in Ma-
chine Learning, 2009, 2.

Podolak, I.T., Roman, A., Theoretical foundations and experimental results for

a hierarchical classifier with overlapping clusters. Computational Intelligence,
2013, 29(2), pp. 357-388.

Czarnecki, W.M., Tabor, J., Extreme entropy machines: Robust information
theoretic classification. arXiv preprint arXiv:1501.05279, 2015.

Huang, G.B., Zhu, Q.Y., Siew, C.K., Extreme learning machine: Theory and
applications. Neurocomputing, 2006, 70(14AS3), pp. 489 — 501.

Tissera, M., McDonnell, M., Deep extreme learning machines for classification.
In: Proceedings of ELM-2014 Volume 1. vol. 3 of Proceedings in Adaptation,
Learning and Optimization. Springer International Publishing 2015 pp. 345-354.

Vinyals, O., Jia, Y., Deng, L., Darrell, T., Learning with recursive perceptual
representations. In: Advances in Neural Information Processing Systems 25.
Curran Associates, Inc. 2012 pp. 2825-2833.

47

[7] Yu, W., Zhuang, F., He, Q., Shi, Z., Learning deep representations via extreme
learning machines. Neurocomputing, 2015, 149, pp. 308 — 315.

[8] Wolpert, D.H., Stacked generalization. Neural Networks, 1992, 5, pp. 241-259.

[9] Cortes, C., Vapnik, V., Support-vector networks. Machine learning, 1995, 20(3),
pp. 273-297.

[10] Tang, Y., Deep learning using linear support vector machines. In: In ICML,
2013.

[11] Lichman, M., UCI machine learning repository, 2013.

[12] Chang, C.C., Lin, C.J., LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2011, 2, pp. 27:1-27:27.

[13] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 2011, 12, pp. 2825—
2830.

Schedae Informaticae Vol. 25 (2016): 49-59

doi: 10.4467/20838476S1.16.004.6185 t | | | 2017
theoretical foundations
of machine learning, Krakow

On Loss Functions for Deep Neural Networks in Classification

KATARZYNA JANOCHA!, WOJCIECH MARIAN CZARNECKI?!
'Faculty of Mathematics and Computer Science,
Jagiellonian University, Krakow, Poland
2DeepMind, London, UK

e-mail: kasiajanocha@gmail.com, lejlot@google.com

Abstract. Deep neural networks are currently among the most commonly
used classifiers. Despite easily achieving very good performance, one of the best
selling points of these models is their modular design — one can conveniently
adapt their architecture to specific needs, change connectivity patterns, attach
specialised layers, experiment with a large amount of activation functions, nor-
malisation schemes and many others. While one can find impressively wide
spread of various configurations of almost every aspect of the deep nets, one
element is, in authors’ opinion, underrepresented — while solving classification
problems, vast majority of papers and applications simply use log loss. In this
paper we try to investigate how particular choices of loss functions affect deep
models and their learning dynamics, as well as resulting classifiers robustness to
various effects. We perform experiments on classical datasets, as well as provide
some additional, theoretical insights into the problem. In particular we show
that £1 and L2 losses are, quite surprisingly, justified classification objectives
for deep nets, by providing probabilistic interpretation in terms of expected mis-
classification. We also introduce two losses which are not typically used as deep
nets objectives and show that they are viable alternatives to the existing ones.

Keywords: loss function, deep learning, classification theory.

Received: 11 December 2016 / Accepted: 30 December 2016

50

1. Introduction

For the last few years the Deep Learning (DL) research has been rapidly developing.
It evolved from tricky pretraining routines [1] to a highly modular, customisable
framework for building machine learning systems for various problems, spanning from
image recognition [2], voice recognition and synthesis [3] to complex Al systems [4].
One of the biggest advantages of DL is enormous flexibility in designing each part
of the architecture, resulting in numerous ways of putting priors over data inside
the model itself [1], finding the most efficient activation functions [5] or learning
algorithms [6]. However, to authors’ best knowledge, most of the community still
keeps one element nearly completely fixed — when it comes to classification, we use
log loss (applied to softmax activation of the output of the network). In this paper
we try to address this issue by performing both theoretical and empirical analysis of
effects various loss functions have on the training of deep nets.

It is worth noting that Tang et al. [7] showed that well fitted hinge loss can outper-
form log loss based networks in typical classification tasks. Lee et al. [8] used squared
hinge loss for classification tasks, achieving very good results. From slightly more
theoretical perspective Choromanska et al. [9] also considered £; loss as a deep net
objective. However, these works seem to be exceptions, appear in complete separation
from one another, and usually do not focus on any effect of the loss function but the
final performance. Our goal is to show these losses in a wider context, comparing one
another under various criteria and provide insights into when — and why — one should
use them.

Table 1. List of losses analysed in this paper. y is true label as one-hot encoding, ¥
is true label as +1/-1 encoding, o is the output of the last layer of the network, .(9)
denotes jth dimension of a given vector, and o(-) denotes probability estimate.

symbol name equation
El L1 loss ||y_OH1
Lo Lo loss ly —oll
L100 expectation loss lly —o(o)|
Looo regularised expectation loss’ lly — o(o)]|3
L 00 Chebyshev loss max; |o(0)() —y)|
hinge hinge [7] (margin) loss jmaX(O, % —yUol)
hinge? squared hinge (margin) loss j max (0, % - }“/(j)o(j))2
hinge® cubed hinge (margin) loss j max (0, % - }“/'(j)o(j))3
log log (cross entropy) loss - Zj y@ logo(0)V)
log? squared log loss — Zj [y¥) log o(0)@)]?
_ (3) 4 (3)

tan Tanimoto loss I\U(O)Hg'i‘%yj\é(—o%:j z(o)(i)y(j)

. 3. o(0) Dy
Dcs Cauchy-Schwarz Divergence [10] — log m

1 See Proposition 1

51

This work focuses on 12 loss functions, described in Table 1. Most of them appear
in deep learning (or more generally — machine learning) literature, however some
in slightly different context than a classification loss. In the following section we
present new insights into theoretical properties of a couple of these losses and then
provide experimental evaluation of resulting models’ properties, including the effect
on speed of learning, final performance, input data and label noise robustness as well
as convergence for simple dataset under limited resources regime.

2. Theory

Let us begin with showing interesting properties of £, functions, typically considered
as purely regressive losses, which should not be used in classification. £; is often used
as an auxiliary loss in deep nets to ensure sparseness of representations. Similarly, Lo
is sometimes (however nowadays quite rarely) applied to weights in order to prevent
them from growing to infinity. In this section we show that — despite their regression
roots — they still have reasonable probabilistic interpretation for classification and can
be used as a main classification objective.

We use the following notation: {(x;,y:)}X; C R? x {0,1}¥ is a training set, an
iid sample from unknown P(x,y) and o denotes a function producing probability
estimates (usually sigmoid or softmax).

Proposition 1. £y loss applied to the probability estimates p(y|x) leads to minimi-
sation of expected misclassification probability (as opposed to mazimisation of fully
correct labelling given by the log loss). Similarly Lo minimises the same factor, but
regularised with a half of expected squared Lo norm of the predictions probability esti-
mates.

Proof. In K-class classification dependent variables are vectors y; € {0,1}¥ with
Li(y;) = 1, thus using notation p; = p(y|x;)

L=k Y -y =430 [v)+ -y
SE DV SRICEE) SRUUTUED SR EEEESS S) SRTL U

Consequently if we sample label according to p; then probability that it actually

matches one hot encoded label in y; equals P(I = I|l ~ p;,l ~ y;) = > Y(J) () , and
consequently

—2-23 3 {Z y9p u)} iy { P =1|i ~ py,1 Nyi)} + const.

Analogously for Lo,

Lo=—2+ Z {Z yZ Pz } +%ZiL2(Yi)2+%ZiL2(Pi)2

_Z]Ep(x’y) |:P(l = l‘l ~ Pl ~ yl)} + EP(x,y) [LQ(pi)Q] + const.

Q

92

O

For this reason we refer to these losses as expectation loss and regularised expec-
tation loss respectively. One could expect that this should lead to higher robustness
to the outliers/noise, as we try to maximise the expected probability of good classi-
fication as opposed to the probability of completely correct labelling (which log loss
does). Indeed, as we show in the experimental section — this property is true for all
losses sharing connection with expectation losses.

So why is using these two loss functions unpopular? Is there anything funda-
mentally wrong with this formulation from the mathematical perspective? While the
following observation is not definitive, it shows an insight into what might be the
issue causing slow convergence of such methods.

Proposition 2. £, Lo losses applied to probabilities estimates coming from sigmoid
(or softmazx) have non-monotonic partial derivatives wrt. to the output of the final
layer (and the loss is not convex nor concave wrt. to last layer weights). Further-
more, they vanish in both infinities, which slows down learning of heavily misclassified
examples.

Proof. Let us denote sigmoid activation as o(z) = (1 + e~%)~! and, without loss of
generality, compute partial derivative of £; when network is presented with z, with
positive label. Let o, denote the output activation for this sample.

O(Ly00) 0 o1 e o
— =—(1-(° =
do (OP) Ho (‘ (+e) |) (OP) (6701’ 4 1)2
e ° ¢
B 0= lim -
oo (e=° + 1)2 0= lim (o1 1)2’
while at the same time —ﬁ = —i < 0, completing the proof of both non-

monotonicity as well as the fact it vanishes when point is heavily misclassified. Lack
of convexity comes from the same argument since second derivative wrt. to any weight
in the final layer of the model changes sign (as it is equivalent to first derivative being
non-monotonic). This comes directly from the above computations and the fact that
op = (w, h,) + b for some internal activation h,, layer weights w and layer bias b. In
a natural way this is true even if we do not have any hidden layers (model is linear).
Proofs for £, and softmax are completely analogous. O

Given this negative result, it seems natural to ask whether a similar property can
be proven to show which loss functions should lead to fast convergence. It seems
like the answer is again positive, however based on the well known deep learning
hypothesis that deep models learn well when dealing with piece-wise linear functions.
An interesting phenomenon in classification based on neural networks is that even
in a deep linear model or rectifier network the top layer is often non-linear, as it
uses softmax or sigmoid activation to produce probability estimates. Once this is
introduced, also the partial derivatives stop being piece-wise linear. We believe that
one can achieve faster, better convergence when we ensure that architecture together
with loss function, produces a piecewise linear partial derivatives (but not constant)
wrt. to final layer activations, especially while using first order optimisation methods.

93

z
&

acie)far
acie)for

s — loger

20 log? oo
— Tan

Figure 1. Left: Visualisation of analysed losses as functions of activation on positive
sample. Middle: Visualisation of partial derivatives wrt. to output neuron for losses
based on linear output. Right: Visualisation of partial derivatives wrt. to output
neuron for losses based on probability estimates.

This property is true only for £ loss and squared hinge loss (see Figure 1) among all
considered ones in this paper.

Finally we show relation between Cauchy-Schwarz Divergence loss and the log
loss, justifying its introduction as an objective for neural nets.

Proposition 3. Cauchy-Schwarz Divergence loss is equivalent to cross entropy loss
regularised with half of expected Renyi’s quadratic entropy of the predictions.

Proof. Using the fact that ¥,3!; : y () = 1we get that log °; p(]) @) =2 yZ log p(J)
as well as ||y;|l2 =1, consequently

(J) (J)

Dos =~ Y, log 2 upznznyln ~% > o> oy + % D logpilallyil

=-%) Z v log pﬂ) + i D, 108 [IPill3 ~ Liog + 3Ep(x.y) [H2(pi)]

3. Experiments

We begin the experimental section with two simple 2D toy datasets. The first one
is checkerboard — 4 class classification problem where [-1,1] square is divided into
64 small squares with cyclic class assignment. The second one, spiral, is a 4 class
generalisation of the well known 2 spirals dataset. Both datasets have 800 training
and 800 testing samples. We train rectifier neural network having from 0 to 5 hidden
layers with 200 units in each of them. Training is performed using Adam [6] with
learning rate of 0.00003 for 60,000 iterations with batch size of 50 samples. In these
simple problems one can distinguish (Figure 2) two groups of losses — one able to fit
to our very dense, low-dimensional data and one struggling to reduce error to 0. The
second group consists of £, Chebyshev, Tanimoto and expectation loss. This division
becomes clear once we build a relatively deep model (5 hidden layers), while for shallow
ones this distinction is not very clear (3 hidden layers) or is even completely lost (1

o4

Linear model 1 hidden layer 3 hidden layers 5 hidden layers

0.40
z 10 10 10
£ 038 £ ox

B 036 1 o8 08 08 — G
g 0 —— o7 07 7 07 — Lo
® 032 06 06 06 — 0
B 030y 05 05 05 — L, eax
<o 04 04 f— | D,
z — g s
£ 026 03 03 03 — hinge
0 20 30 40 50 & 20 30 4 0 6 W20 30 40 0 6 W20 310 40 0 6 hinge?
inge’

10 10 10 hinge®

-

g o 09 09 09 log
E 08 08 / 08 log®
g 7 — log*
5028 07 07 = o7 - 9
'

& a7 0.6 0.6 06, 7~ tan
B A 05 05 05

= s

gosff 04 _7.; E 04 04

03 / 03

T B

we’e
0

Figure 2. Top row: Learning curves for toy datasets. Bottom row: examples of
decision boundaries, from left: £, loss, log loss, £1 o ¢ loss, hinge? loss.

hidden layer or linear model). To further confirm the lack of ability to easily overfit we
also ran an experiment in which we tried to fit 800 samples from uniform distribution
over [—1,1] with randomly assigned 4 labels and achieved analogous partitioning,.

During following, real data-based experiments, we focus on further investigation
of loss functions properties emerging after application to deep models, as well as
characteristics of the created models. In particular, we show that lack of ability to
reduce training error to 0 is often correlated with robustness to various types of noise
(despite not underfitting the data).

Let us now proceed with one of the most common datasets used in deep learning
community — MNIST [11]. We train network consisting from 0 to 5 hidden layers,
each followed by ReLU activation function and dropout [12] with 50% probability.
Each hidden layer consists of 512 neurons, and whole model is trained using Adam [6]
with learning rate of 0.00003 for 100,000 iterations using batch size of 100 samples.
There are few interesting findings, visible on Figure 3. First, results obtained for a
linear model (lack of hidden layers) are qualitatively different from all the remaining
ones. For example, using regularised expectation loss leads to the strongest model in
terms of both training accuracy and generalisation capabilities, while the same loss
function is far from being the best one once we introduce non-linearities. This shows
two important things: first — observations and conclusions drawn from linear models
do not seem to transfer to deep nets, and second — there seems to be an interesting
co-dependence between learning dynamics coming from training rectifier nets and loss
functions used. As a side note, 93% testing accuracy, obtained by L5 0o and Dcg, is
a very strong result on MNIST using linear model without any data augmentation or
model regularisation.

95

4 &y J 0 20 20 60 80 100 0 20 a0 60 80 100
Iterations (k) Iterations (k)

Linear model 1 hidden layer 3 hidden layers 5 hidden layers
0935 100 Y 100 - Y 100 - Y
0930 — Lo
099 099 099
> 0925 — 4
]
£ oo 0.98 098 .98 — Lyoo
c 0915 097 097 097 — L&
£ g910 — L.oa
096 096 096 D,
0.905 es
0.900 0.95 0.95 095 — hinge
200 40 60 80 100 0 40 60 80 100 0 40 60 B0 100 0 40 6 B0 hinge?
inge®
0935 Iterations (k) Loo Iterations (k) 1o Iterations (k) Lo Iterations (k) !
— hinge®
7 //""' 0.99 099 0.99 log
5 0925 .
€ g920 0.98 098 0.98 — log®
o tan
g oeus 0.97 0.97 0.97
0910
no0s 096 096 096
0.900 0.95 0.95 095
20 40 60 80 100 W 40 60 80 100 0 40 60 B0 100 0 40 6 B0 100
Iterations (k) Iterations (k) Iterations (k) Iterations (k)
% Learning speed Learning speed Train accuracy Test accuracy
s %
g T -
£ =4
g 8 ﬂ
N Y

Figure 3. Top two rows: learning curves for MNIST dataset. Bottom row: (left)
speed of learning expressed as expected training/testing accuracy when we sample it-
eration uniformly between 10k and 100k; (right) learning curves for CIFAR10 dataset.

Second interesting observation regards the speed of learning. It appears that
(apart from linear models) hinge? and hinge® losses are consistently the fastest in
training, and once we have enough hidden layers (basically more than 1) also £5. This
matches our theoretical analysis of these losses in the previous section. At the same
time both expectation losses are much slower to train, which we believe to be a result
of their vanishing partial derivatives in heavily misclassified points (Proposition 2).
It is important to notice that while higher order hinge losses (especially 2°¢) actually
help in terms of both speed and final performance, the same property does not hold
for higher order log losses. One possible explanation is that taking a square of log
loss only reduces model’s certainty in classification (since any number between 0 and
1 taken to 2"d power decreases), while for hinge losses the metric used for penalising
margin-outliers is changed, and both L; metric (leading to hinge) as well as any other
L, norm (leading to hinge?) make perfect sense.

Third remark is that pure £; does not learn at all (ending up with 20% accuracy)
due to causing serious “jumps” in the model because of its partial derivatives wrt. to
net output always being either -1 or 1. Consequently, even after classifying a point
correctly, we are still heavily penalised for it, while with losses like Lo the closer we
are to the correct classification - the smaller the penalty is.

Finally, in terms of generalisation capabilities margin-based losses seem to out-
perform the remaining families. One could argue that this is just a result of lack of
regularisation in the rest of the losses, however we underline that all the analysed
networks use strong dropout to counter the overfitting problem, and that typical Ly
or Ly regularisation penalties do not work well in deep networks.

56

For CIFAR10 dataset we used a simple convnet, consisting of 3 layers of con-
volutions, each of size 5x5 and 64 filters, with ReLU activation functions, batch-
normalisation and pooling operations in between them (max pooling after first layer
and then two average poolings, all 3x3 with stride 2), followed by a single fully con-
nected hidden layer with 128 ReLLU neurons, and final softmax layer with 10 neurons.
As one can see in Figure 3, despite completely different architecture than before, we
obtain very similar results — higher order margin losses lead to faster training and sig-
nificantly stronger models. Quite surprisingly — Lo loss also exhibits similar property.
Expectation losses again learn much slower (with the regularised one — training at the
level of log loss and unregularised — significantly worse). We would like to underline
that this is a very simple architecture, far from the state-of-the art models for CI-
FAR10, however we wish to avoid using architectures which are heavily overfitted to
the log loss. Furthermore, the aim of this paper is not to provide any state-of-the-art
models, but rather to characterise effects of loss functions on deep networks.

As the final interesting result in these experiments, we notice that Cauchy-Schwarz
Divergence as the optimisation criterion seems to be a consistently better choice than
log loss. It performs equally well or better on both MNIST and CIFARI10 in terms
of both learning speed and the final performance. At the same time this information
theoretic measure is very rarely used in DL community, and rather exploited in shallow
learning (for both classification [10] and clustering [13]).

Now we focus on the impact these losses have on noise robustness of the deep
nets. We start by performing the following experiment on previously trained MNIST
classifiers: we add noise sampled from N (0, €I) to each x; and observe how quickly
(in terms of growing €) network’s training accuracy drops (Figure 4). The first crucial
observation is that both expectation losses perform very well in terms of input noise
robustness. We believe that this is a consequence of what Proposition 1 showed about
their probabilistic interpretation — that they lead to minimisation of the expected
misclassification, which is less biased towards outliers than log loss (or other losses
that focus on maximisation of probability of correct labelling of all samples at the
same time). For log loss a single heavily misclassified point has an enormous impact
on the overall error surface, while for these two losses — it is minor. Secondly, margin
based losses also perform well on this test, usually slightly worse than the expectation
losses, but still better than log loss. This shows that despite no longer maximising
the misclassification margin while being used in deep nets — they still share some
characteristics with their linear origins (SVM). In another, similar experiment, we
focus on the generalisation capabilities of the networks trained with increasing amount
of label noise in the training set (Figure 4) and obtain analogous results, showing that
robustness to the noise of expectation and margin losses is high for both input and
label noise for deep nets, while again — slightly different results are obtained for linear
models, where log loss is more robust than the margin-based ones. What is even
more interesting, a completely non-standard loss function — Tanimoto loss — performs
extremely well on this task. We believe that its exact analysis is one of the important
future research directions.

o7

Linear model 1 hidden layer 3 hidden layers 5 hidden layers

0 — 03 N\ 09 09
508 o 04 08
& o7 07 07
2 os 07 0
3 06 >
gos oe 05 o \
S 04 : 04

=005 =010 =0.25 =050

T 093 093 093 093
EREN //,_; 042 /‘:f’——"—: 092 /"/_ 092 Lisa
5 091 y 091 091 //— 091 % — 4
£ 090 090 1 0s0 0390 — oo
= 089 08y ogs| | 089 — L
E s 088 nasl | 088 / R
S 087 087 087 087} | D‘
i ose 086 | 086 086 Ag—x G

085 085 0385 0385 — hinge

0 40 B0 B0 100 0 40 60 B0 100 0 40 60 B0 100 0 40 &0 80 1 hinge®

w100 100 100 100 . 9
o hinge®
g 098 — 09 098 098 Iog
E 096 096 096 e — — log*
2 tan
z 094 psat |} 094 094
E 092 092 092 092 N
& 090 090 090 090

20 40 60 80 20 40 60 80 100 20 40 60 80 100
Iterations (k) Iterations (k) Iterations (k) Iterations (k)

2
5]
&
a
2
2

Figure 4. Top row: Training accuracy curves for the MNIST trained models, when
presented with training examples with added noise from N (0, €I), plotted as a function
of e. Middle and bottom rows: Testing accuracy curves for the MNSIT experiment
with € of training labels changed, plotted as a function of training iteration. If £; oo
is not visible, it is almost perfectly overlapped by L, o 0.

4. Conclusions

This paper provides basic analysis of effects the choice of the classification loss function
has on deep neural networks training as well as their final characteristics. We believe
the obtained results will lead to a wider adoption of various losses in DL work — where
up till now log loss is unquestionable favourite.

In the theoretical section we show that, surprisingly, losses which are believed to be
applicable mostly to regression, have a valid probabilistic interpretation when applied
to deep network-based classifiers. We also provide theoretical arguments explaining
why using them might lead to slower training, which might be one of the reasons DL
practitioners have not yet exploited this path. Our experiments lead to two crucial
conclusions. First, that intuitions drawn from linear models rarely transfer to highly-
nonlinear deep networks. Second, that depending on the application of the deep model
— losses other than log loss are preferable. In particular, for purely accuracy focused
research, squared hinge loss seems to be a better choice at it converges faster as well
as provides better performance. It is also more robust to noise in the training set
labelling and slightly more robust to noise in the input space. However, if one works
with highly noised dataset (both input and output spaces) — the expectation losses
described in detail in this paper — seem to be the best choice, both from theoretical

o8

and empirical perspective.

At the same time this topic is far from being exhausted, with a large amount of

possible paths to follow and questions to be answered. In particular, non-classical loss
functions such as Tanimoto loss and Cauchy-Schwarz Divergence are worth further
investigation.

References

Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P., Ezploring strategies for
training deep neural networks. Journal of Machine Learning Research, 2009,
10(Jan), pp. 1-40.

Krizhevsky, A., Sutskever, 1., Hinton, G.E., Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing
systems, 2012, pp. 1097-1105.

Oord, A.v.d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., Kavukcuoglu, K., Wavenet: A generative model
for raw audio. arXiv preprint arXiv:1609.03499, 2016.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, 1., Panneershelvam, V., Lanctot, M., et al.,
Mastering the game of go with deep neural networks and tree search. Nature,
2016, 529(7587), pp. 484-489.

Clevert, D.A., Unterthiner, T., Hochreiter, S., Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289,
2015.

Kingma, D., Ba, J., Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tang, Y., Deep learning using linear support vector machines. arXiv preprint
arXiv:1306.0239, 2013.

Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z., Deeply-supervised nets. In:
AISTATS. vol. 2., 2015, pp. 6.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y., The loss
surfaces of multilayer networks. In: AISTATS, 2015.

Czarnecki, W.M., Jozefowicz, R., Tabor, J., Maximum entropy linear mani-
fold for learning discriminative low-dimensional representation. In: Joint Fu-
ropean Conference on Machine Learning and Knowledge Discovery in Databases,
Springer, 2015, pp. 52-67.

59

[11] LeCun, Y., Cortes, C., Burges, C.J., The mnist database of handwritten digits,
1998.

[12] Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.,
Dropout: a simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 2014, 15(1), pp. 1929-1958.

[13] Principe, J.C., Xu, D., Fisher, J., Information theoretic learning. Unsupervised
adaptive filtering, 2000, 1, pp. 265-319.

Schedae Informaticae Vol. 25 (2016): 61-72

doi: 10.4467/20838476S1.16.005.6186 t | | | 20 17
theoretical foundations |
of machine learning, Krakow

Optimization of /”-regularized Linear Models via Coordinate Descent

JACEK KLIMASZEWSKI, MARCIN KORZEN
Group, Department
Faculty of Computer Science and Information Technology
ul. Zomierska 49, 71-210, Szczecin, Poland

e-mail: {jklimaszewski, mkorzen} @wi.zut.edu.pl

Abstract. In this paper we demonstrate, how ¢”-regularized univariate quadratic loss
function can be effectively optimized (for 0 < p < 1) without approximation of penalty
term and provide analytical solution for p = % Next we adapt this approach for im-
portant multivariate cases like linear and logistic regressions, using Coordinate Descent
algorithm. At the end we compare sample complexity of £! with £7,0 < p < 1 regularized

models for artificial and real datasets.

Keywords: Classification, Coordinate Descent, Regression, Sparsity

1. Introduction

In the supervised learning there are two (usually numeric) matrices: X, x4 and y,x1, where
n stands for number of observations and d represents number of attributes. The goal is to
build such a model, that for unseen examples it would predict correct answers. Therefore
final model should contain only relevant features, that were selected at training stage. One
of the way to do this is to include regularization term in the loss function, which penalizes
coefficients in the model.

Received: 11 December 2016 / Accepted: 30 December 2016

62

A=0.25 A=4
L] —
— 0.25
— 05 3
osh| 0.75 L
. o 1 //
.
.
.
.
.
.
.
s 0.0 T 7 8
.
/J ///
.
.
.

—05} e

.

.

.
_1.0,

-1.0 -0.5 0.0 0.5 1.0 -5 0 5

c c

Figure 1. Plot of x* = argmin, § - (c —x)? + A |x|” for various exponent p and A.

1.1. Related Work

Historically regularization was used for the first time to solve ill-posed problems [1]. The so
called Tikhonov regularization (also known as ridge regression) penalizes squared ¢2-norm
of coefficients. It is known that this type of regularization shrinks correlated features, but it
also produces dense solutions (all coefficients in the model are non-zero). The same situation
is observed for bridge regression (¢? for p € (1,2)) [2], because regularization term is strictly
convex.

Next, ¢'-norm was tried and it drew a big attention, because it produces sparse solutions
[3, 4]. €1-regularized problem with convex loss function is still convex, but its derivative
has discontinuity at origin, which causes certain coefficients to be set exactly to zero. In the
Figure 1 it can be seen that solution is shifted from the true coefficient (dashed line), what
results in biased models.

When 0 < p < 1, ¢P-regularized problem with convex loss function becomes non-convex,
making optimization more difficult due to many local minima. On the other hand, resulting
model has smaller bias. Work by [5] treated non-convex regularization, but local quadratic
approximation was used to approximate concavity — this approach is sensitive to initial-
ization, as it can give different solutions for different initial points (once a coefficient is set
to zero, it will stay at zero). /P-“norm” was also mentioned in [6], but authors abandoned
using coordinate descent procedure in this case, because they encountered some instability
(caused by discontinuity in path of solutions, what is depicted in the Figure 1) and impossi-
bility of converging to the global minimum (using Multi-stage Local Linear Approximation),
even for some univariate case. Some non-convex regularizers were also studied in [7] and ¢7
quasi-norm was considered in [8].

63

2. The Algorithm for Univariate Case

Consider a function (also known as proximal operator [9]):

u

F) =5 (e=x)"+ 11, (1)
where p € [0,1], ¢ € R is a true coefficient, x € R is its estimate, u > 0 controls strength of
squared error and A > O controls strength of regularization. One may note that u can be fused
with A and equation (1) can be written in a different way:

F) = 2 (c—x)? 4 p- |, where p = z @)

N =

but this form was deliberately omitted for better clarification.
For p =1 equation (1) is still convex and its unique global minimum is given by a soft-
thresholding formula [10]:

x* =sgn(c) - max <0, e] — /}:) . 3)

The case p = 0 is known as hard-thresholding [10], as it minimizes number of non-zero
coefficients. Minimum of equation (1) is either 0 or ¢!.

When p € (0, 1), regularization term causes non-convexity, what can be seen in the Figure
2. In this case equation (1) may have 1 minimum (either ¢ for A = 0 or O for sufficiently large
A) or 2 minima.

2.1. Special Case of p =}

When x > 0, equation (1) can be transformed into quartic function using substitution r = X2
g(t) =5 (c=)? + -1, @)

whose roots (and extrema) can be calculated analytically. Subtracting & - ¢? from equation (4)
yields:

r-(g-z3—y-c-r+x)=0. (5)

Now we need to find such Aica for which equation (5) has double root (that coincides with
minimum). Using ideas presented in [11] it can be shown that:

3

2 2
Acritical = M <3 'C> . (6)

VIf f(x) = § - le—x[|3 +A- X, |x;|”, then each x; can be computed independently (x7 is either O or c;). This
does not hold in general case f(x) = § - lc— Ax|3+A- ¥ |x;|7.

64

If A > Acritical, then equation (4) has
global minimum at zero. Otherwise its sta- 075
tionary points need to be found. Differenti-
ating with respect to ¢ yields cubic equation:

A
P —ct4+—=0. (7
2# 0.60 |

In this case equation (7) has 3 real roots (see =

[11]):

o = 2-,/% - cos,
B = 2-\/5-cos(0+F), (8 osst

\ o)

Yy = 2-\/5 cos(0+%), » | | | | ‘
here . : . - : : ;
A Figure 2. Plot of eq. (1) for different A.
0 = — -arccos | — 3)
4u(5)?

o is a local minimum of equation (4), Y is
a local maximum and f is ignored, because

it is negative. Since t = x2, o need to be squared to obtain x*. Negative case is handled
similarly.

2.2. Algorithm for General Case of p € (0,1)

In general case Newton’s method [12] can be used to find minimum of equation (1), because
it is differentiable for x # 0:

f'x) = (x—c)+A-p-sgnx) - |, (10)
') =p+k-p-(p—1)-|x["2 (11)

If ¢ =0, then x = 0 is a global minimum.
U2

Acritical in general case was found in a similar way to case p = % — formula f(x) —5c
has 2 minima that coincide with roots when A = A¢igicar. To find Acigical, the following system

of equations has to be solved:
{f (x) 7€ 0 (12)

fx)=0
It can be solved via substitution — the solution is:

_2=2p
X=5=,6

-p
hetin = 4 (32 1ef)

Now minimization of (1) is much easier: firstly, value A¢ggicar is computed and then condi-
tion Acritical < A is checked — if it is met, then there is nothing to do, because global minimum

(13)

65

is at zero (we select x = 0 even when Acgitical = A, though global minimum is not unique in
that case). Otherwise Newton’s method is launched for a starting point xo = c (it is very close
to the minimum, so only a few iterations are needed).

3. The algorithm for multivariate case

In this section it is shown how Coordinate Descent method is applied to minimize ¢P-regularized
residual sum of squares (RSS). Then this approach is used to estimate coefficients of the lo-
gistic regression model via iteratively reweighted least squares.

3.1. Basic Algorithm for Linear Regression

Coefficients w; of the linear regression model are estimated by minimization of residual sum
of squares (RSS). ¢P-regularized loss function has a form (intercept wy is not regularized):

2
1
L(w) = 2'Z<}’i—W0—ZXUW1> +7V'Z|Wj|pa (14)
i J J
where y; is the i-th value of the variable to be predicted and x; is the i-th row of the explanatory

matrix X. Differentiating equation (14) with respect to w; yields following formulae:

oL Yixij e (Vi — LaojXikWi) _
am:;%<%_ o +h-pesgn(w))-pwl? . (5)

%L

ow?

=Yg+ hepe(p=1)-wlP~? (16)
J t

X (i e Xiwk)

From equations (15) and (16) it can be seen that c; = and u; = Z,-xl-zj, SO:

Zix,‘zj
oL _
5 =H (W) +h-posgn(w;) - wjl? g (a7
J
9’L _
mzﬂj+7¥'P'(P_l)"Wj|p 2 (18)

J

Now it is clear that equations (17) and (18) have the same form as equations (10) and (11)
respectively. Hence Coordinate Descent procedure can be constructed:

The algorithm is stopped when it exceeds maximum number of iterations or maximum
relative difference between wE-k) and wg-kﬂ)
fied by user).

falls below € = 107> (or some other value speci-

66

Algorithm 1 Coordinate Descent procedure for #P-regularized Linear Regression.
while has not converged do
wo = & X (vi = X wjxij)
for j < 1tod do
Compute ¢ and Agigicar for j-th coordinate.
if Acritical < A then

Wj 0
else
W4 NewtonAIgorithm(aaTL,/_, %, c)
end if '
end for
end while

3.2. Basic Algorithm for Logistic Regression

A similar approach can be adapted for fitting the logistic regression model. Here we consider
the case where y is a binary variable (y; € {0, 1}):
1

PO = lxi,w) =
(yl |X15W) 1+exp(_W0_ZjoXij)7

19)

1
B 14exp(wo+ X wjxij)

P(yi:leiaw):I_P(yizl‘xhw) (20)

A common way of estimation of model’s coefficients is minimization of the negative
log-likelihood function (or, equivalently, maximization of the likelihood function). The ¢7-
regularized negative log-likelihood function has a form:

L(w) ==} yi-log (p(xi)) + (1 —yi) -log (1 — p (xi)) + A} [w;|”, 21
i J

where p(x;) = P(yi = 1[x;,w).
Equation (21) does not have closed-form solution, but it can be locally approximated by
quadratic function [13]. Introduction of weights:

o; = p(x;) - (1-p(xi)), (22)
yi — p(X;)

s =wo+ Y wixij+=————=, (23)
7 %

allows us to rewrite equation (21) to the form:

2
1
L(w) = 5-Y o (Zi—wo—zwjxif> A Y [wl” 24
i J J=1

Now minimization of equation (21) is changed to the successive minimization of equation
(24) — for wik) update weights and compute wk 1) until convergence.

Finally a similar algorithm to the Algorithm 1 of fitting logistic regression model is pre-
sented below:

67

Algorithm 2 Coordinate Descent for ¢7-regularized Logistic Regression.

while has not converged do
Update o and z using current w.
while not converged do

Lioi (z=Lwixij)
wo <= Yo

for j < 1tod do
Compute ¢ and Agigicar for j-th coordinate.
if Acriticat < A then

w;j ~—0
else
W4 NewtonAlgorithm(aav—{‘j7 %, c)
end if '
end for
end while
end while

3.3. Improvements to the Basic Algorithms

Ad hoc implementation of above algorithms is not efficient for large datasets. To improve
it, ideas described in [14] were used — i.e. naive updates, pathwise coordinate descent and
computation over active set of features.

4. Experiments

Experimental part was written in Python. Procedures for estimation of coefficients of ¢7-
regularized linear and logistic regression were implemented in C++ and called from Python
script via ctypes package. Vectorized matrices using column-major order were passed to
the C++ routines to speed-up computation. Some parts of glmnet [14] were used during
implementation of our solution. In each experiment tolerance € was set to 107>,

We use three test data sets:

1. DataSet#1 is artificial set of size 100 x 1000(4) (consisting of 100 samples with 1000
attributes drawn from multivariate normal distribution and only 4 significant attributes),
output is a linear combination of 4 significant variables (in case of logistic regression
it was sign of this linear combination);

2. DataSet#2 is artifical set of size 100 x 1000(32) generated similarly;

3. DataSet#3 is a Golub’s Leukemia dataset [15], preprocessed by [16]. This dataset has
38 training samples and 34 test samples.

68

4.1. Impact of p on coefficients’ paths

The first experiment shows the coefficients’ path for linear and logistic regression models for
p =0,0.333,0.667, 1. The results are presented in the Figures 3 and 4. The vertical dashed
line shows value of A that yields optimal model (with the highest accuracy). The accuracy
measure in the case of linear regression is RSS, and for logistic regression it is the accuracy of
classification. As one can see, in both cases £!-regularized regressions include some number
of random attributes in the optimal model. In the case p < 1 the optimal model selects 4
significant attributes correctly — this shows a qualitative difference between ¢! and ¢, p < 1
penalty terms. The second observation is that for smaller exponents p coefficients’ path is
more robust with respect to A (for p = 0 coefficients’ paths are piecewise constant).

It can also be noted that in case d > n when A is close to 0, coefficients of logistic
regression wander off to £ in order to achieve probabilities of 0 or 1, but this is natural.

ZO ZU‘333
T 1.5 .

77777777777777777 1.0
---------------- 0.5
0.0

coefficients

------- -05
-------- -1.0
-15

15

1.0
0.5
0.0

-0.5

coefficients

-1.0

5 | | | | |
20 40 60 80 20 40 60 80 100 120 14

A A

Figure 3. Paths of coefficients for the linear regression for DataSet#1; horizontal dashed
lines represent true coefficients, vertical dashed line depicts value of A for which model has
the lowest RSS, tested via 10-fold cross validation procedure.

4.2. Sample complexity of Logistic Regression

In the next experiment we compared influence of exponent p on sample complexity of the
model. We varied number of samples in the train set, next we tested each classifier using
test set, we took coefficients from the solution’s path (computed for 65 values of A, Apin =
0.01 - Apax) and we computed prediction for each solution on the path. This process was

69

ZO 60'333
T 20 T

coefficients
o

coefficients

2 4 6 8 10 12 14

Figure 4. Paths of coefficients for the logistic regression for DataSet#1; vertical dashed line
depicts value of A for which model has the highest classification accuracy, tested via 10-fold
cross-validation procedure; dotted line corresponds to relevant features.

repeated 50 times and the accuracy was averaged. Best results for each sample size are
presented in the Figure 5 for DataSet#1 and in the Figure 6 for DataSet#2. As the number of
training samples rises, accuracies of all models grows. It can be seen that accuracies of ¢!-
and ¢%-7-regularized models are roughly the same in the beginning, but later /273 is superior
to ¢'. Surprisingly, models for p < 0.5 gave almost the same accuracies. Generally results
show that models with smaller exponent p achieve the desired accuracy earlier.

0.9

0.8

0.7

accuracy
accuracy

0.6

0.5

0.4
0

600 800
#samples #samples

150

Figure 5. Results of the experiment with 4 Figure 6. Results of the experiment with 32
relevant features. relevant features.

70

4.3. Test on Leukemia dataset

Logistic regression model was trained on preprocessed Leukemia dataset using leave-one-out
cross-validation for 100 values of A and Ay, = 0.001 - Apax. Table 1 presents results of the
experiment.

Table 1. Accuracy on the test set.

p | Timing | Accuracy | AUC | #nnz
0.0 1.78 32/34 0.936 2
025 | 16.17 30/34 0.925
0.5 19.20 33/34 0.993
0.75 | 15.04 32/34 0.968
1.0 7.20 31/34 0.989

~N DD = =

It can be seen that all models for p < 1 gave sparser solution than ¢'-regularized model.
Also models for p > 0.5 are more accurate (higher area under ROC curve). Although ¢0-3-
regularized model seems to be superior, it is hard to select the best model in this case, because
dataset is relatively small.

5. Conclusions

In the paper we have shown that ¢”-regularized regressions can be effectively fitted via
adapted version of pathwise coordinate descent algorithm. The results show that in some
cases models with penalty function for smaller exponent p can lead to models with some
attractive features like:

* sparser solutions;
* more robust coefficients” paths with respect to A;

 smaller exponents p, close to p = 0, have a better selecting properties in the case of
independent attributes.

The case of correlated variables, which was in fact omitted in the paper, needs further
research, because all considered models should be corrected in the similar way to elastic-net
model [17].

71

6. References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Tikhonov, A.N., On the stability of inverse problems (in Russian). Doklady Akademii
Nauk SSSR, 1943, 39(5), pp. 195-198.

Frank, L.E., Friedman, J.H., A Statistical View of Some Chemometrics Regression Tools.
Technometrics, 1993, 35, pp. 109-148.

Williams, PM., Bayesian Regularisation and Pruning using a Laplace Prior. Neural
Computation, 1994, 7, pp. 117-143.

Tibshirani, R., Regression Shrinkage and Selection Via the Lasso. Journal of the Royal
Statistical Society, Series B, 1996, 58, pp. 267-288.

Fan, J., Li, R., Variable Selection via Nonconcave Penalized Likelihood and its Oracle
Properties. Journal of the American Statistical Association, 2001, 96, pp. 1348—1360.

Mazumder, R., Friedman, J., Hastie, T., SparseNet: Coordinate Descent With Noncon-
vex Penalties. Journal of the American Statistical Association, 2011, 106(495), pp.
1125-1138.

Nikolova, M., Analysis of the Recovery of Edges in Images and Signals by Minimizing
Nonconvex Regularized Least-Squares. Multiscale Modeling & Simulation, 2005, 4(3),
pp. 960-991.

Bredies, K., Lorenz, D., Reiterer, S., Minimization of Non-smooth, Non-convex Func-
tionals by Iterative Thresholding. Journal of Optimization Theory and Applications,
2015, 165, pp. 78-112.

Moreau, 1.J., Fonctions convexes duales et points proximaux dans un espace hilbertien.
Comptes Rendus de 1’Académie des Sciences (Paris), Série A, 1962, 255, pp. 2897-
2899.

Donoho, D., Johnstone, 1., Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika,
1994, 81, pp. 425-455.

Nickalls, R.W.D., A New Approach to Solving the Cubic: Cardan’s Solution Revealed.
The Mathematical Gazette, 1993, 77(480), pp. 354-359.

Kincaid, D., Cheney, W., Numerical Analysis: Mathematics of Scientific Computing.
American Mathematical Society, 2002.

Green, PJ., Iteratively Reweighted Least Squares for Maximum Likelihood Estimation,
and some Robust and Resistant Alternatives. Journal of the Royal Statistical Society.
Series B (Methodological), 1984, 46(2).

Friedman, J., Hastie, T., Tibshirani, R., Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 2010, 33(1), pp. 1-22.

72

[15] Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H.,
Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E., Molecular classifi-

cation of cancer: class discovery and class prediction by gene expression monitoring.
Science, 1999, 286(5439), pp. 531-537.

[16] Dettling, M., BagBoosting for Tumor Classification with Gene Expression Data. Bioin-
formatics, 2004, 20(18), pp. 3583-3593.

[17] Zou, H., Hastie, T., Regularization and Variable Selection via the Elastic Net. Journal
of the Royal Statistical Society, Series B, 2005, 67, pp. 301-320.

Schedae Informaticae Vol. 25 (2016): 73-83

doi: 10.4467/20838476S1.16.006.6187 t | I | 2017
theoretical foundations
of machine learning, Krakow

Pairwise versus Pointwise Ranking: A Case Study

VITALIK MELNIKOV!, PRITHA GUPTA!, BERND FRICK?,
DANIEL KAIMANN?, EYKE HULLERMEIER '
!Department of Computer Science
2Faculty of Business Administration and Economics
Paderborn University
Warburger Str. 100, 33098 Paderborn
e-mail: {melnikov,prithag,eyke} @mail.upb.de, {bernd.frick,daniel.kaimann} Qupbd.de

Abstract. Object ranking is one of the most relevant problems in the realm of
preference learning and ranking. It is mostly tackled by means of two different
techniques, often referred to as pairwise and pointwise ranking. In this paper,
we present a case study in which we systematically compare two representatives
of these techniques, a method based on the reduction of ranking to binary clas-
sification and so-called expected rank regression (ERR). Our experiments are
meant to complement existing studies in this field, especially previous evalua-
tions of ERR. And indeed, our results are not fully in agreement with previous
findings and partly support different conclusions.

Keywords: Preference learning, object ranking, linear regression, logistic re-
gression, hotel rating, TripAdvisor

1. Introduction

Preference learning is an emerging subfield of machine learning that has received
increasing attention in recent years [1]. Roughly speaking, the goal in preference
learning is to induce preference models from observed data that reveals information

Received: 11 December 2016 / Accepted: 30 December 2016

74

about the preferences of an individual or a group of individuals in a direct or indirect
way; these models are then used to predict the preferences in a new situation.

In general, a preference learning system is provided with a set of items (e.g.,
products) for which preferences are known, and the task is to learn a function that
predicts preferences for a new set of items (e.g., new products not seen so far), or for
the same set of items in a different context (e.g., the same products but for a different
user). Frequently, the predicted preference relation is required to form a total order,
in which case we also speak of a ranking problem. In fact, among the problems in the
realm of preference learning, the task of “learning to rank” has probably received the
most attention in the literature so far, and a number of different ranking problems
have already been introduced. Based on the type of training data and the required
predictions, Fiirnkranz and Hiillermeier [1] distinguish between the problems of object
ranking [2, 3], label ranking [4, 5, 6] and instance ranking [7].

The focus of this paper is on object ranking. What we present is an empirical study
in which we compare the two most common approaches to this problem: pairwise
ranking and pointwise ranking, with the latter being represented by a method called
expected rank regression [8, 9, 3]. Although we are not the first to conduct experiments
of that kind, our study sheds new light on the comparison of these two techniques
and helps to better understand their advantages and disadvantages.

The rest of the paper is organized as follows. In the next section, we recall the
problem of object ranking as well as the techniques of pairwise and pointwise ranking.
The ranking data used for the purpose of our case study is described in Section 3.
The design of the experiments and the results obtained are then presented in Section
4, prior to concluding the paper in Section 5.

2. Object ranking

Consider a reference set of objects or items &', and assume each item x € X to be
described in terms of a feature vector; thus, an item is a vector @ = (21,...,24) € R4
and X C R? Training data consists of a set of rankings {O1,...,On}, where each
ranking O, is a total order of a subset of n; = |O;| items z;, € X:

Oj: CCj1>-CCj2>-...>-$17jnj (1)

The order relation > is typically (though not necessarily) interpreted in terms of
preferences, i.e., > @’ suggests that « is preferred to @’.

The goal in object ranking is to learn a ranking function that accepts any (query)
subset @ C X of n = |@Q)| items as input. As output, the function produces a ranking
(total order) O of these items. This prediction is evaluated in terms of a suitable loss
function or performance metric; a common choice is the Kendall 7 correlation, which
counts the number of item pairs @, x’ € @Q that are incorrectly ordered by O and
normalizes this number (which is between 0 and n(n — 1)/2) to the range [—1, +1].

75
2.1. Representation and learning

The ranking function sought in object ranking is a complex mapping from 2% to the
set of all total orders over subsets of X'. A first question, therefore, is how to represent
a “ranking-valued” function of that kind, and a second one is how it can be learned
efficiently.

As for the question of representation, a ranking function is typically implemented
by means of a scoring function U : X — R, so that # = ' if U(z) > U(x’) for
all z,2’ € X. In other words, a ranking-valued function is implicitly represented by
a real-valued function. Obviously, U can be considered as a kind of utility function,
and U(x) as a latent utility degree assigned to an item x. Seen from this point of
view, the goal in object ranking is to learn a latent utility function on a reference set
X. In the following, we shall also refer to U itself as a ranking function.

The representation of a ranking function in terms of a real-valued (utility) function
also suggests natural approaches to learning. In particular, two such approaches are
prevailing in the literature. The first one reduces the original ranking problem to
regression; as it seeks a model that assigns appropriate scores to individual items x,
it is referred to as the pointwise approach. The second idea is to reduce the problem
to binary classification; here, the focus is on pairs of items, which is why the approach
is called the pairwise approach.

2.2. Pairwise ranking

Given a ranking (1) as training information, the pairwise approach extracts all pair-
wise preferences x;, > x;,, 1 < ¢ < k < nj, and considers these preferences as
examples for a binary classification task. This approach is especially simple if U is a
linear function of the form U(z) = w ' . In this case, U(z) > U(z') if w 'z > w2/,
which is equivalent to w 'z > 0 for z = & — 2’ € R%. Thus, from the point of view of
binary classification (with a linear threshold model), z can be considered as a positive
and —z as a negative example.

In principle, any binary classification algorithm can be applied to learn the weight
vector w from set of examples produced in this way. In the case of logistic regression,
the resulting model has a specifically nice interpretation. Given two items x and z’,
the model produces a probability for the preference = x’ and a complementary
probability for &’ > x. The former corresponds to the probability of a positive label
y = +1 for the instance z = = — ', i.e.,

1
T+ oxp(—w' (@ — @)
_ exp(U(x))
~ exp(U(z)) +exp(U(2'))
Thus, observed preferences are supposed to follow the Bradley-Terry model of discrete
choice [10]: Having to choose between two options & and ', the probability for decid-
ing in favor of either of them is proportional to the (exponential of the) corresponding

Plz>2)=Ply=+1|z2) =

76

utility. The maximum likelihood estimator w then simply maximizes the probability
of the observed preferences under this choice model.

2.3. Pointwise ranking

Pointwise ranking methods induce a (utility) function U : X — R as well. To do so,
however, they fit a regression function to training examples of the form (x;,y;). Here,
an obvious question concerns the definition of the target values y;. In the setting of
object ranking as introduced above, only relative information about the preference
of items «; in comparisons to others is given, but no absolute evaluations that could
immediately be associated with a single ;.

Obviously, a reasonable target y; for an item x; is its (relative) position in X, i.e.,
y; = #{x € X|z; = x},} because sorting according to these scores yields perfect
ranking performance. Again, however, since only rankings O; of subsets of X are
observed, these scores are not part of the training data.

In the method of expected rank regression (ERR), the scores are therefore approx-
imated in terms of their expectation [8, 9, 3]. More specifically, given a ranking O; of
length n;, an item @; ranked on position r; in O; is assigned the score y; = r;/(n; +1).
This is justified by taking an expectation over all (complete) rankings of X and as-
suming a uniform distribution. Roughly speaking, the items in O; are assumed to be
distributed uniformly among the whole spectrum of ranks.

2.4. Pairwise versus pointwise ranking

The pointwise approach solves a regression problem on |O1| + ...+ |On| training ex-
amples in total; thus, if |O;| =~ K, the size of the training data is of the order O(KN).
The number of examples created by the pairwise approach for binary classification is
of the order O(K?2N)—although, at the cost of a slight loss of information, it could
be reduced to O(KN) as well, namely by only extracting consecutive preferences
xj, = x;,,, from (1). In any case, linear regression is simpler and computationally
less expensive than methods for binary classification, such as logistic regression. Thus,
from the point of view of complexity, the pointwise approach seems to be preferable.

Also note that, while the pointwise approach leaves the rankings O; intact, the
pairwise approach splits a ranking O; into pairwise comparisons. This necessarily
comes with a loss of information, even when generating the full set of comparisons.
This is because, statistically, the probability of observing the ranking as a whole is
normally different from the probability of observing the set of pairwise preferences
independently of each other.

That being said, the assignment of scores y; in ERR is based on a rather strong
and arguably unrealistic assumption. Moreover, these scores do not reflect an inherent

1 assuming X is finite

T

property of an item «;, but instead depend on the context in which x; is observed.
Therefore, one may wonder whether predicting the y; as a function of item-features
is possible at all. Roughly speaking, the pointwise approach could be questioned
because it adds information to the training data that is actually not present. This
information is unreliable at best and misleading at worst. The pairwise approach, on
the other hand, extracts only qualitative information. This information is weaker but
indeed valid.

Finally, one may wonder whether a regression approach is suitable for fitting
(relative) ranks, because ranks are only measured on an ordinal scale. In this regard,
however, one should also note that the regression function U is not required to fit the
data well in a numerical sense, i.e., in terms of the squared error loss. Instead, as it
is only used for the purpose of ranking, any function that is comonotonic with the
ranks is equally good.

Empirically, ERR has indeed been shown to be competitive and sometimes even
superior to other ranking methods [8, 9, 3], albeit under experimental conditions
that agree with the assumptions underlying this method. This paper is meant to
complement these experiments by another case study, in which we systematically
control certain properties of the training data in order to see to what extent they
affect ERR. In particular, we are interested in scenarios that violate the assumptions
of ERR. The hypotheses of this study are as follows:

H1: Due to the disputable way in which target values are produced for training in
ERR, this method should in general be inferior to pairwise ranking.

H2: In particular, the shorter the training rankings O;, the less accurate the approx-
imation of target values in terms of expected ranks, and hence the worse the
performance of ERR should be. Likewise, we suspect that the variance of the
lengths nq,...,ny of the rankings in the training data has a negative influence.

H3: The performance of ERR will also drop due to a violation of the assumption of
uniform sampling of positions.

3. TripAdvisor hotel dataset

Our case study deals with the ranking of hotels. The dataset used for performing
the experiments was taken from the TripAdvisor website,? using a combination of
web crawling and web scraping tools, on September 21 and 22, 2014. The dataset
contains five rankings for hotels in five major German cities: Diisseldorf (110 hotels),
Hamburg (170 hotels), Berlin (363 hotels), Frankfurt (149 hotels), and Munich (194
hotels). These rankings are referred to as complete rankings in the rest of this paper
(they correspond to the reference set X).

The position of each hotel in the ranking is determined by the so-called popu-
larity index, which is computed by TripAdvisor based on the reviews for the hotels.

2 www.tripadvisor.com

78

Although the true underlying computational formula (utility function) is unknown,
several major factors contributing to this index are mentioned on the website.® These
include the number of reviews, the age of reviews, and the overall quality of reviews.
We used these attributes as features for each hotel in the dataset and complemented
them by a set of additional attributes: distance to the city center (real number), num-
ber of hotel stars (ordinal), number of pictures on the TripAdvisor website (natural
number), number of hotel rooms (natural number), average price per double room
(real number), recommendation percent (percentage), number of reviews, five numer-
ical features containing the number of ratings (from very good to very poor) given
by the reviewers, and six real-valued features with average rating for different hotel
attributes (location, sleep quality, room service, cost benefit, and cleanliness).

4. Experiments

We compare ERR with pairwise ranking based on logistic regression (LR). To guar-
antee a fair comparison, a linear utility function U(z) = w'x is used in both ap-
proaches. Moreover, the preprocessing of the data, including a standardization of all
input attributes, was done in exactly the same way.

The general experimental design is as follows: We use one complete ranking
(Berlin with 363 hotels) to generate training data in the form of incomplete rank-
ings Oq,...,0xn. LR and ERR are trained on this data as described in Sections 2.2.
and 2.3., respectively. The models thus obtained are then evaluated on the remaining
four cities: The four complete rankings are predicted, the Kendall correlation is de-
termined for each of them individually, and finally the correlations are averaged. All
experiments are repeated 100 times.

To test our hypotheses, the sampling procedure was controlled as follows:

e The lengths n; = |O;| were sampled (independently) at random from a uni-
form distribution on {K —d,..., K 4+ d}. Thus, the average length of an ob-
servation is K, and the standard deviation is proportional to d. We chose
K € {5,10,20,50,100,250} and d € {0,1,3,4,5,7,17,47,97}.4

e To make the results of different experiments comparable, regardless of the pa-
rameters K and d, we set N = 1000/K. Thus, the total number of hotels
included in a sample is always 1000 (on average).

o After the length n; of a ranking has been obtained, the ranking O; itself is
produced by randomly sampling n; hotels in Berlin (and keeping their original
order). For the sampling procedure, three different scenarios are considered:

— Uniform. In this case, hotels are drawn uniformly at random (without
replacement).

3 https://www.tripadvisor.com/TripAdvisorInsights /n684/tripadvisor-popularity-ranking-key-
factors-and-how-improve
4 Since a length cannot be negative, not all (K, d) combinations are possible.

79

— Top hotels. This procedure has a bias in favor of hotels in the top of the
list. First, we randomly pick one hotel from the first 50 in the complete
ranking. This hotel is removed, and the next one is chosen among its
neighbors, namely the three ones above and below. This procedure is
continued until n; hotels are collected.

— Two groups. The same sampling procedure as in the previous case is used
(with a smaller neighborhood of 2 instead of 3), but the first hotel is
randomly taken from first or the last 50 hotels.

The results of the experiments are summarized in Table 1 in terms of the average
Kendall 7 correlation and its standard deviation. Moreover, the following loss/gain
of performance of ERR relative to LR is shown in the form of heatmaps in Figure 1:

TLR — TERR (2)
TLR

The following conclusions can be drawn from these results:

e The pairwise approach (LR) consistently outperforms the pointwise approach
(ERR) in all experiments. Moreover, pairwise ranking remains relatively stable
across all settings, whereas the performance of ERR is much more sensitive
toward the parameters. Thus, our hypothesis H1 is clearly confirmed.

e Our conjecture that ERR benefits from longer rankings is confirmed as well.
Indeed, the performance of ERR clearly improves with increasing K. For the
variance of the lengths, a clear trend is not visible. A problem here could
be that the mean and variance of the length cannot be separated completely:
Increasing d will always lead to producing a few rankings that are longer than
K, which might be beneficial for ERR. Anyway, our conjecture H2 is confirmed
only partially.

e Both approaches perform best in the case of uniform sampling. This was to
be expected, since uniform sampling produces observations from the complete
feature space. In the top hotels scenario, the pairwise approach remains rather
stable, whereas ERR significantly drops in performance and seems to predict
almost at random. A similar picture is obtained for the two groups scenario.
These results clearly support our conjecture H3, namely that ERR is very sen-
sitive toward deviations from the assumption of uniform sampling.

80

Table 1. Mean + standard deviation of Kendall’s tau for the uniform scenario (top),
top hotels (middle), and two groups (bottom).

Approach K/d 0 1 3 4 17 47 97

Pointwise 2 248 +.228 - - - - - - -
Pairwise 2 .832+£.010 - - - - - - - -

Pointwise 5 390 £.229 302 4 .221 .154 4+ .204 - - - - - -
Pairwise 5 840 £.006 .840 4 .005 .839 4 .006 - - - - - -

Pointwise 10 .377 £.179 .4324.145 .536 4+ .104 .555+.125 .567 £.111 .615+.091 - - -
Pairwise 10 .841£.005 .8414.005 .8404.005 .840+.005 .839+.006 .839=+.005 - -

Pointwise 20 .707 £.054 .703£.053 .7004.063 .712+.064 .713 £.048 .719£.038 .7434.037 - -
Pairwise 20 .841£.004 .8414.004 .8414.005 .841+.005 .840+.005 .841+.005 .8404.005 -

Pointwise 50 .786 £.016 .785+.016 .7844.019 .786+.019 .785+.019 .785£.017 .7884.018 .7944.016
Pairwise 50 .841 £.004 .841+.004 .8414.004 .8414.005 .841+.004 .842+£.005 .8414.005 .8414.004 -

Pointwise 100 .803 £.009 .8044.009 .8024.010 .805=+.009 .804£.009 .803+.010 .8014.010 .802=+.009 .806 +.008
Pairwise 100 .841 £.004 .8414.004 .8414.004 .841+.004 .841+£.004 .842+.003 .8414.004 .842+.004 .842+.004

Pointwise 250 .812+£.003 .8114.003 .8124.004 .812+.004 .811+.004 .812+.004 .8114.004 .811+.004 .812+.004
Pairwise 250 .843 £.003 .842+.003 .843 +£.003 .843+.003 .842+.003 .843 4 .003 .8434.003 .8424.003 .843 +.002

ot
-

Approach K/d 0 1 3 4 5 7 17 47 97

Pointwise 2 085 +.232 - - - - - - - -
Pairwise 2 749+ .079 - - - - - - -

Pointwise 5 088 £.339 .010%.316 .0214 .287 - - - - - -
Pairwise 5 722 £.073 .735+.068 .734 £ .081 - - - - - -

Pointwise 10 .037 £.291 .028 4.233 .0834.227 .137+.285 .067 £.253 .115+.257 - -
Pairwise 10 .704 £.078 .708 .082 .7114.075 .675+.105 .700£.084 .676 & .087 - - -

Pointwise 20 .321 £.217 .3324.224 .3274.231 .299+.205 .367 £.203 .304+.216 .4124+.183 -
Pairwise 20 .670£.090 .673 £.067 .676 £.075 .673+.072 .683 4+ .068 .707 4 .066 .707 4 .050 - -

Pointwise 50 .587 £.042 .589 £ .046 .586 4-.047 .585+.040 .586 +.048 .581 £ .046 .5794.043 .596 +.054 -
Pairwise 50 .777£.016 .781+.014 .7764.016 .776+.016 .773£.019 .774£.018 .7644.027 .790+.018 -

Pointwise 100 .675£.013 .677 &.014 .6744.012 .675+.012 .676 £.010 .678 £.012 .6744.018 .654 £.035 .690 £ .052
Pairwise 100 .762+£.013 .763 4 .014 .7594.014 .765+.013 .767 £.014 .767 £.012 .7824.014 .766 +.010 .781+£.010

Pointwise 250 .792+.006 .792+.005 .794+.007 .793+.006 .7944.007 .7944.008 .7944 .011 .789 4 .013 .782 4 .022
Pairwise 250 .811+.004 .8114.004 .8124.004 .811+.004 .811+£.004 .811+.005 .8144.005 .816+.004 .822+.009

Approach K/d 0 1 3 4 5 7 17 47 97
Pointwise 2 006 +.279 - - - - - - -
Pairwise 2 402 £.210 - - - - - - - -

Pointwise 5 015 £.287 .008 £.173 .030 £.139 - - - - -
Pairwise 5 533 £.132 569 & .124 543 +.109 - - - - - -

Pointwise 10 .019 £.243 .0044.190 .021+.183 .010+.155 .023 £.187 .018 +.160 - - -
Pairwise 10 .595£.065 .5754.070 .5874.062 .588+.069 .589 £ .076 .602=+.069 - - -

Pointwise 20 .172£.263 .061 £.211 .0764.190 .030 £.217 .045£.206 .048 £.198 .0214.212 - -
Pairwise 20 .658 £.051 .646 4.052 .6554.045 .670+.050 .663 £.052 .667 &.054 .696 4 .044 - -

Pointwise 50 .350 £.295 .260 +£.251 .160 +.233 .153 +.225 .177+.228 .116+.254 110+ .242 .158 4+ .249 -
Pairwise 50 .761£.016 .762=+.016 .7604.018 .764+.018 .764+.017 .762+.017 .7654.017 .789 4 .014 -

Pointwise 100 .482 £ .249 423 4.237 4064 .212 420+ .217 .342+£.193 .385+.221 .2594.272 .270+.296 .408 £ .266
Pairwise 100 .803 £.015 .804 4 .010 .8054.009 .805+.012 .805+.013 .806+.011 .807+.011 .819+.010 .834 +.008

Pointwise 250 .802+£.011 .8034.012 .8024.012 .802+.012 .802+£.012 .805+.012 .7994.019 .798 +.023 .789 £ .032
Pairwise 250 .836 £.008 .836 4 .008 .8364.008 .836+.009 .836 £.007 .837£.007 .8384.006 .839+.007 .838 £.009

Mean length
100 50 0

250

Mean length

2
5]

250

Mean length
0

100

250

3

3

4 5 7
Length deviation

4 5 7
Length deviation

4 5 7
Length deviation

17

17

17

47

47

47

97

97

o
w0
°
|
3

97

1.0

0.4

0.2

0.0

1.0

0.4

0.2

0.0

1.0

0.0

81

Figure 1. Relative improvement (2) for the uniform scenario (top), top hotels (mid-

dle), and two groups (bottom).

82

5. Conclusion

In summary, the results of our case study convey a picture that to some extent
disagrees with previous experimental evaluations of expected rank regression, and
which confirms our reservations regarding this approach. ERR seems to be compet-
itive under ideal conditions, namely for sufficiently long rankings that are uniformly
distributed across ranks. However, any deviation from these conditions leads to a
significant drop in performance. As opposed to this, pairwise ranking shows a much
more stable behavior and maintains a consistently strong performance across different
experimental settings.

Needless to say, a single case study is necessarily limited in scope. Therefore, the
conclusions drawn from the study should of course not be overgeneralized. Instead,
we consider them as a starting point for further investigations that are needed to
complete the picture and to gain a full understanding of the techniques of pairwise
and pointwise ranking.

Acknowledgments

This work has been supported by the German Research Foundation (Deutsche Forschungs-
gesellschaft, DFG) within the Collaborative Research Centre “On-The-Fly Comput-
ing” (CRC 901).

6. References

[1] Firnkranz, J., Hillermeier, E., eds. Preference Learning. Springer, 2010.

[2] Cohen, W., Schapire, R., Singer, Y., Learning to order things. Journal of Artificial
Intelligence Research, 1999, 10(1), pp. 243-270.

[3] Kamishima, T., Kazawa, H., Akaho, S., A survey and empirical comparison of
object ranking methods. In Firnkranz, J., Hilllermeier, E., eds.: Preference
Learning. Springer 2010 pp. 181-202.

[4] Har-Peled, S., Roth, D., Zimak, D., Constraint classification: a new approach
to multiclass classification. In Cesa-Bianchi, N., Numao, M., Reischuk, R., eds.:
Proceedings of the 13th International Conference on Algorithmic Learning The-
ory, Springer, 2002, pp. 365-379.

[5]

[10]

83

Cheng, W., Hiihn, J., Hiillermeier, E., Decision tree and instance-based learn-
ing for label ranking. In: Proceedings of the 26th International Conference on
Machine Learning, Omnipress, 2009, pp. 161-168.

Vembu, S., Gértner, T., Label ranking: a survey. In Fiirnkranz, J., Hiillermeier,
E., eds.: Preference Learning. Springer 2010 pp. 45—64.

Firnkranz, J., Hilllermeier, E., Vanderlooy, S., Binary decomposition methods
for multipartite ranking. In: Proc. of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases,
Springer, 2009, pp. 359-374.

Kamishima, T., Kazawa, H., Akaho, S., Supervised ordering — an empirical sur-
vey. In: Proc. ICDM, 5th IEEFE International Conference on Data Mining, Hous-
ton, Texas, 2005, pp. 673—676.

Kamishima, T., Akaho, S., Supervised ordering by regression combined with Thur-
stone’s model. Artif. Intell. Rev., 2006, 25(3), pp. 231-246.

Marden, J., Analyzing and Modeling Rank Data. Chapman and Hall, London,
New York, 1995.

Schedae Informaticae Vol. 25 (2016): 85-101

doi: 10.4467/20838476S1.16.007.6188 t | I I 2017
theoretical foundations |
of machine learning, Krakow

Impact of Clustering Parameters on the Efficiency of the
Knowledge Mining Process in Rule-based Knowledge Bases

AGNIESZKA NOWAK-BRZEZINSKA', TOMASZ RYBOTYCKI?
!University of Silesia, ul. Bankowa 12
40-007 Katowice, Poland,
e-mail: agnieszka.nowak@us.edu.pl
2IBS PAN, Doctoral Study, ul. Newelska 6
01-447 Warszawa, Polska

Abstract. In this work the subject of the application of clustering as a knowl-
edge extraction method from real-world data is discussed. The authors analyze
an influence of different clustering parameters on the quality of the created
structure of rules clusters and the efficiency of the knowledge mining process for
rules / rules clusters. The goal of the experiments was to measure the impact of
clustering parameters on the efficiency of the knowledge mining process in rule-
based knowledge bases denoted by the size of the created clusters or the size
of the representatives. Some parameters guarantee to produce shorter/longer
representatives of the created rules clusters as well as smaller/greater clusters
sizes.

Keywords: rule-based knowledge bases, clustering, similarity, visualization

1. Introduction

For the last twenty years, there has been an enormous interest in integrating database
and knowledge-based system (K B.S) technologies to create an infrastructure for mod-
ern advanced applications. The result of it are knowledge bases (K Bs) which consist
of database systems extended with some kind of knowledge, usually expressed in

Received: 11 December 2016 / Accepted: 30 December 2016

86

the form of rules [1] - logical implications, that can usually be described in form of
equation (1):

condition; & conditions & ... & condition,, = conclusion, (1)

Such a natural way of knowledge representation makes rules easily understood by
experts and knowledge engineers (that are working with K BSs) as well as people not
involved in the expert system building (such as data scientists not acquainted with
given domain).

1.1. Rules as knowledge representation method

Rules are very specific type of data (knowledge) structure. Usually they are generated
from data stored in tabular form (f.e. decision tables). Methods used in order to
generate the rules, aims to create so called minimal rules, which means that the rules
achieved in this way, have got a short description and cover as many data from the
original dataset as possible. Every rule contains two parts: conditional (with at least
one premise) and decisional (usually with one conclusion). Sometimes (what makes
the analysis more complicated) conclusion of one rule may be a condition in others.
In this case it is said that such rules form a chain, and during the inference process
they are all processed as a cause and effect chain. Sometimes rules’ attributes are
weighted therefore the importance of some rules (given as a ordered set of attributes)
is higher than others because of difference in weights of their attributes and/or their
lengths. What is more, conditional and decisional part of a rule can be also treated
differently from each other, f.e. conditional part may have higher priority (greater
weights for premises than for a conclusion). All these circumstances make the rules
very specific kind of knowledge representation.

1.2. An efficiency of the knowledge mining process

K Bs are constantly increasing in volume, thus the knowledge, often stored as a set
of rules, is getting progressively more complex and when the rules are not organized
into any structure, the KBS isn’t as efficient as it could be. There is a growing
research interest in searching for methods that could manage large sets of rules using
the clustering approach as well as joining and/or reducing rules [2]. Because of many
advantages of clustering algorithms [3, 4] it is possible to organize the rules in a smart
way. The aim of clustering algorithms is to group the rules into a set of groups (f.e.
the hierarchy) of similar rules. To achieve it, some kind of technique, that allows
describing similarity between rules, has to be proposed. In the literature there are
already a lot of methods of describing similarity between objects, that can be modified

87

to work with rules as well. When two given rules are said to be the most similar (by
given similarity measure in a given step of clustering process), they are meant to be
clustered before the others. It influences on the further clustering steps. Similarity
measure used to find a pair of rules or groups of rules that are the most similar in a
given moment is called an intra-cluster similarity measure or inter-object (inter-rule)
similarity measure. The authors studied different intra-cluster similarity measures [5]
and choose the following three measures for experimental validation: Gower’s measure
[6, 7], Simple Matching Coefficient (SMC) [7] and Jaccard’s Index [8] sometimes also
called weighted similarity or weighted similarity coefficient [7]. They are further
described and anylyzed in Section 2.1.1.

The analysis of the rules’ similarity can be based on either premises or conclusions
of the rules. In this reasearch rules are divided into a number of groups based on sim-
ilar premises in order to improve the inference process efficiency [9]. This approach
is dictated by the forementioned fact, that conditional parts of the rules are gen-
erally longer than their decisional parts, and thus making clustering more complex,
accurate and interesting. Moreover, the authors directed their research toward the
forward (data driven) inference process where the premises of the rules are the basis
of searching. To minimize the number of rules that needs to be read before KBS’s
anwser to given input is reached, instead of searching within the whole set of rules
(as in case of traditional inference processes), only representatives of groups would
be compared with the set of facts and/or hypothesis to be proved. The most rele-
vant group of rules is selected and the exhaustive searching is done only within this
group. This way, given a set of rules, new knowledge may be derived using a standard
forward chaining inference process, which can be described as follows: each cycle of
deductions starts with matching the condition part of each rule with known facts. If
at least one rule matches the facts asserted into the rule base, it is fired. It’s really
crucial to find and describe all the factors which influence clustering results and inter-
ference efficiency as it’d help in designing or partitioning of K Bs in order to maximize
K BS’s effectiveness.

There is also the other type of cluster similarity measure - so called inter-cluster
similarity measure. It’s used to describe how much each group resembles one another
basing on their members (see the details in Section 2.1.2.).

Examining the influence of choosing different similarity measures on the efficiency
of clustering algorithms, is the main goal of this research. It’s crucial to answer the
question if a given similarity measure influences the shape of grouped K B’s struc-
ture. To have a chance to analyze it, the silimarity measures described in section 2.1.
were implemented by the authors. The result of this implementation is the CluVis
system, described briefly in Section 4. The system allows to examine different simi-
larity measures and methods of hierarchical clustering for any given knowledge base
in predefined form described further in [10].

The rest of the paper is organized as follows. We first mention all related efforts
in the study of rules clustering in Section 2., where the description of different inter
and intra cluster similarity measures were described. Section 3. focuses on two se-
lected visualization algorithms designed for hierarchical strucures. Short description
of the authors system CluVis can be found in Section 4., whereas Section 5. describes
experimental setup, evaluation methodology and the results on public data sets.

88

2. Rules clustering

Nowadays mankind’s knowledge is growing rapidly. People are constantly developing
new ways of using this knowledge in practice. As a result KBSs came into being -
decision systems, in particular, are prime exmample of that. These systems, often
limited to only one domain, tend to store their knowledge in special form. Rule-based
knowledge bases (as mentioned in 1.) are most common, because it’s easier (for knowl-
edge engineers and experts) to present laws and rudiments of given domain in this
shape. Rules stored in knowledge bases are often unorganized as usually there’s no
reasonable way of doing so, because it’s hard (if not impossible) to judge eg. which
law or theorem is more important than the other. However, to ensure KBSs’ optimal
work, it’d be necessary to decrease amount of data that system needs to read to get
final conclusion. One way to achive that is proposing some kind of rules partitioning
that’d agregate similiar and separate different rules, describing each of such groups
with proper description (generalization of it’s members) and thus allowing searching
through KB from most general groups to specific rule and, ipso facto, successfully
decreasing amount of data read during generating KBS’s anwser. The same approach
may be neccessary during updating KB (deleting redundant rules etc.), where search-
ing through KB is also required. It’s possible to find such partitioning using data
exploration methods. The most natural approach seems to be clustering.

Clustering is one of the oldest and most common methods of organizing data sets.
The goal of clustering is to maximize intra-cluster similarity and minimize inter-cluster
similarity, thus creating a partition, where similiar rules are joined into one cluster
and rules different from others are singled out. During this unsupervised process
similiar objects (according to given similarity measure) are joined into groups thus
often decreasing amount of data required to be analyzed in order to extract knowledge
from examined data set. Several methods of clustering has been proposed, each of
them includes variety of different techniques. Due to forementioned fact selecting
proper algorithm is a nontrivial task as there are many factors to be considered. In
this work, sets of complex objects known as rules (denoted as Horn’s clauses) are
being examined. As the authors were aiming to find hierarchy-like partitioning that’d
ensure that finding specific rule is achieved through searching through more general
groups, hierarchical clustering methods were used. Hierarchical clustering has also
one more advantage. It doesn’t impose on any special methods of describing clusters
similarity and thus can be used for rules clustering without additional modifications.
To avoid increasing complexity of research the authors selected one of the most well
known algorithms from this popular group of techniques - Classical AHC algorithm -
and used to organize several K Bs.

2.1. Similarity measures

Measuring similarity or distance between two data points is a core requirement for
several data mining and knowledge discovery tasks that involve distance computation.

89

The notion of similarity or distance for categorical data is not as straightforward as
for continuous data. When data consists of objects that agregate both types at once
the problem is much more complicated. It is necessary to find a measure, that could
deal with this case.

2.1.1. Intra-cluster similarity measures

In this paper, the authors study a variety of similarity measures. Having a set of
attributes A and set of sets of their values V' = |, V; rules premises and conclusions
are build using pairs (a;,v;), a; € A,v; € V; called descriptors D as a vector of lenght
equal to number of attributes in permise and conclusion of given rule, where i-th
position denotes the value of i-th attribute for a given premise/conclusion attribute.

In all similarity measures, described in this work, similarity .S between two rules
r; and 7; can be denoted as weighted sum of similarities s; considering k-th common
attribute of these rules. This can be written as equation (2):

S(ri,r;) = Z WeSk(Tik, k), (2)

krar€(A(ry)NA(r)))

where A(r) is set of attributes of rule 7, wy, is the weight assigned to k-th attribute
and r;, and r;;, are values of k-th attributes of i-th and j-th rule respectively.

SMC (simple matching coefficient) [7] is the simplest measure of similarity consid-
ered in this work. It handles continous attributes the same way it does with categorical
attributes, namely (equation (3)):

_ 1 if Tik = Tjk
s(riks k) = { 0 otherwise (3)

In this case, however, overall similarity of rules S is simple sum, as weight wy

of each attribute is equal to 1. Due to that fact this similarity measure tends
to favor rules with more attributes. More advanced form of this measure is Jac-
card index [8, 7]. It eliminates forementioned drawback of SMC by setting weight

wy = WM(”)), where Card : V — N is the cardinality of a set.

Last measure described in this work is Gower’s index [6]. This measure is most
complicated one, that the authors have used, as it handles categorical data differently
from numeriacal data. Similarity considering categorical data is count the same way
as in case of Jaccard or SMC. Similarity of continous attributes can be denoted as
following (equation (4)):

_rik—rjk] :
- 1 rangelar) if rang.e(ak) #0
1 otherwise

(4)

where range(ax) = max(ax) — min(ay) is range of k-th common attribute.

90

All measures described in this subsection were used as a parameter of classical
AHC algorithm in order to examine influence they have on resultant structure of
clustering. It was shown that f.e. some of them tends to generate structures with
larger number of ungrouped rules and that different inter-object similarity measures
influences average length of cluster representative, thus allowing one to consider K B
partitioning basing on cluster representatives length.

2.1.2. Inter-cluster similarity measures

Apart from the usual choice of similarity functions, linkage criterion must be selected
(since a cluster consists of multiple objects, there are multiple candidates to compute
the distance to). There are many possible ways of describing inter-cluster similarity.
The most popular among them are known as Single Link (SL), Complete Link (CoL),
Average Link (AL) and Centroid Link (CL) [11, 3, 4].

Single link is the most head-on approach, as it describes similarity of the clusters
basing on their most similar objects, thus in case of rules-clustering one may say,
that clusters of rules are as similar as their most common two rules. This method is
known to cause undesireable occurence called cluster chaining, wherein long clusters
are being created. In general, however, it’s not proper partitioning for given dataset
and thus another method should be proposed.

The most similiar to SL is method called Complete Link. Both of these methods
returns similarity of single pair of rules as similarity of two clusters, however, in case
of complete link, clusters are only as similar as their two most disrinct rules. The
values of CoLi are obviously lower (on average) than in case of SL. It is known in the
literature (and also had been shown during experiments in this work) that CoL tends
to generate partitionings wherein there’s lower number of small groups and bigger
number of larger ones. Both of forementioned methods share a common drawback,
namely: they are sensitive to noisy data. The reason for that is that they both base
their result on single pair of rules instead of considering whole contents of the clusters.

Another inter-cluster similarity measure that was used in this work is Average
Link. Let C;, C; be two clusters of rules. Then similarity between C; and C; can be
defined by equation (5):

EriECi erecj S(T’i’ Tj)

i*x Uy

(5)

In other words AL is described as mean similarity of all rules inside examined clusters.
It’s sensitive neither to noisy data nor to cluster chaining as it considers all rules that
are inside given clusters.

Another measure that considers all rules within given clusters is centroid link.
This one however, instead of considering similarity between rules that are inside ex-
amined clusters, considers only similarity between two virtual objects, called centroids
of clusters. Usually centroids are described as geometrical center of the cluster, how-
ever, in case of rules, defining geometrical center of cluster is non-trivial task, thus

91

representative of this cluster was used instead. It was dictated by assumption that
representative of the cluster (further described in subsection 2.2.) is meant to be the
most general rule in the cluster - one may say most ,, centered ” one. Let ¢(C;) be
centroid of i-th cluster. Then similarity between clusters C; and C; can simply be
defined as CL(C;, C;) = S(c(Cy), ¢(Cy)).

In previous authors’ researches it was noticed that the method of creating the
representatives are equally important with the clustering algorithm and similarity
measures used to clustering rules. In this work, further researches on this matter
were conducted.

2.2. Cluster’s representative

It is very important for data to be presented in the most friendly way. Sole visualiza-
tion of clustering (described further in 3.) is not enough, as it would only reduce the
whole pattern discovery to examining an accumulation of shapes, thus some kind of
symbolic description has to be proposed. Cluster representatives are the proposed so-
lution for this issue. There are many methods of creating representatives. In this work
representative aims to be an average rule of the cluster, basing on cluster’s content.
Its creation algorithm can be described as follows. Having as input data: cluster C,
and a threshold value ¢ [%)], find in the cluster’s attributes set A only these attributes
that can be found in ¢ rules and put them in set A’. Then for each attribute a € A’
check if @ is symbolic or numeric. If it is symbolic then count modal value, if numeric -
average value and return the attribute-value pairs from A’ as cluster’s representative.
The representative created this way contains attributes that are the most important
for the whole cluster (they are common enough). This way the examined group is well
described by the minimal number of variables !. It should be possible to characterize
the clusters using a small number of variables (the number of attributes attained by
this method strongly depends on selected threshold value). It is very important to
examine the quality of created clusters and to generate the well-formed descriptions
for them, what is difficult especially when the objects of clustering are rules.

2.3. Clustering algorithm

As mentioned in section 2. Classical AHC algorithm was used to for rules clustering
in this work. It’s essential to point out that during each iteration step it joins only
two most similiar clusters (not all clusters with similarity exceeding given threshold).
Decision of choosing this algorithm over general AHC was dictated by the fact, that
selecting rational threshold value, especially when grouping complex objects such as
rules, would require deep analysis of each examined data set.

1 However the authors see the necessity to analyze the more methods for creating clusters’ repre-
sentatives and their influence on the resultant structure efficiency.

92

Clustering algorithm used in this work agregates all the elements forementioned in
this section. As AHC algorithm doesn’t specify neither inter-object nor inter-cluster
similarity measure, they have to be precised as algorithm’s parameters. In this work all
measures specified in 2.1.1. and 2.1.2. were used in all possible configurations. During
each merging step created cluster is given a description, in form of representative,
generated in a way described in 2.2.. It’s worth mentioning that representative is
created basing solely on rules within given cluster, not on representative of cluster
figuring higher in hierarchy.

The grouping is complete after selected number of groups is reached. The number
of produced clusters is in range from 1 to N, where N is the number of rules in exam-
ined knowledge base. After grouping is finished resultant structure can be visualized
using algorithms described further in 3..

3. Knowledge base visualization

The most common way of clustering presentation is tree like structure called dendro-
gram, however, it has some fatal flaws that makes it inadequate for researches such as
presented in this work. Among others, the most vital issue is that it isn’t suited for
representing large clusterings, as it quickly becomes less readable. This problem con-
cerns many visualization algorithms, but some of them loses their readability much
slower e.g. treemaps. In this work two treemap algorithms were used - rectangular
treemap [12] and circular treemap [13]. The differences between the two are very dis-
tinct for each of them base on different geometrical shapes and has different methods
of deploying them. In this work classical slice-and-dice deployment method was used
for rectangles as proposed in [12] and method described in [10] was used for circles.

Figure 1 presents the case of using the CluVis to cluster 42 rules in a given knowl-
edge base with 70 attributes into 10 groups. Clusters are presented graphically using
Circular Treemap (as selected visualization algorithm) and classical AHC (as clus-
tering algorithm) with Gower measure for inter-cluster similarity measure and (CL)
Complete link as intra cluster similarity measure. For this particular case the biggest
cluster’s size is 18 rules (which is 42% of all rules in K'B), (denoted as J33) with the
representative’s length equal to 67 descriptors (which is also the maximum length for
representatives in general). The other clusters contains the following number of rules:
4,4,6,1,1,1,4,2,1.

Visualizations generated using these algorithms, without any additional features,
would only be accumulations of shapes. In some cases such solution would seem
sufficient, however, in general, especially when exploring large sets of rules, it is
confusing or chaotic. To make exploration of large K Bs easier each visualization is
responsive. Each shape stores information about cluster it represents. Moreover there
is possibility of future examining objects agregated in cluster by selecting it. To ensure
that desired cluster is selected, active shape is highlighted. To make visualization even
more readable, colors (of the rainbow) were used to mark procentage size of the cluster.
Colors and their order were selected in such way to make it easy to remember.

93

Figure 1. Sample treemap visualization.

4. CluVis

CluVis [10] is an application designed to group sets of rules generated by RSES [14]
and visualizing them using selected treemap methods. It is first application capable of
working on raw K Bs as generated from RSES. It was successfully used in previous re-
searches to group and visualize medical knowledge bases generated from artificial data
sets available on [15] as well as one generated from real medical data [11]. Moreover,
it aggregates functionalities of both clustering and visualization software, making it
universal tool for exploring K Bs. Along its main functionalities (many of which can
be seen in figure 2), described in more detail in sections 2. and 3. CluVis is capable
of generating reports of grouping (to txt or special xml files which can be opened
in such applications as e.g. Libre Calc) containing detailed information about each
obtained cluster and about clustering in general (number of nodes, min/max/avg rep-
resentative length...). It’s also possible to save generated visualization to png file as
well as to find best clustering (according to implemented cluster validation indexes -
MDI and MDBI - not discussed in this article). CluVis is an open source applica-
tion written in C+411 using QT graphic libraries. It’s available in english and polish
and its source code can be downloaded from https://github.com/Tomev/CluVis.

94

Every XML report file, generated using the authors application, contains the fol-
lowing informations: index of an experiment (Index), the name of the knowledge base
file (Name of the base), the number of attributes (Attributes number), of objects
(Objects number), of nodes in the created hierarchy (Nodes number), of created clus-
ters (Clusters number). It also says what was the algorithm used to visualize the
groups of rules (X or Y), which clustering algorithm it uses, what was the intra-
cluster and inter-cluster similarity measure, what part of the rule (conditional or/and
decisional) was analyzed as well as the names of the biggest and the smallest cluster
(The biggest cluster / The smallest cluster). Moreover it gives the values for:
Coverage sum,

Biggest cluster size, Biggest representative length, Ungrouped objects,
Biggest representative size, Smallest representative size,

Average representative size, MDI\verb, MDBI. It also contains the details data of
each cluster, like Index, Cluster’s name, Cluster’s size,

Objects percent in cluster, Cluster’s nodes number,

Cluster’s nodes percent, Cluster’s coverage, Cluster’s coverage percent,
Cluster’s representative, Cluster’s representative length.

Then an example of the cluster representative (which contains 25 of descriptors)
may looks like:

(history_ringing=f)&(history_fullness=£f)&(m_m_sn_gt_500=£)&
(m_s_sn_gt_2k=f)&(boneAbnormal=f)&(history_buzzing=£f)&(m_m_gt_2k=£f)&
(m_gt_1k=f)&(history_dizziness=f)&(m_s_sn_gt_1k=f)&(airBoneGap=£f)&
(history_fluctuating=f)&(m_s_gt_500=f)&(age_gt_60=t)&(air=mild)&
(history_noise=t)&(m_p_sn_gt_2k=f)&(m_m_sn_gt_2k=f)&(history_heredity=£f)&
(history_recruitment=f)&(late_wave_poor=f)&(m_at_2k=f)&(m_cond_1lt_1k=f)&
(bser=MISSING)&(m_s_sn_gt_3k=f)=>(class=cochlear_age_and_noise)

Automatically created K Bs (e.g. creating rules from dataset using LEM?2 algo-
rithm) have a chance to contain some undesired rules (like ones that would never be
activated or are simply redundant). It is essential to maintain simplicity of K Bs thus
some method of eliminating these rules is required. As CluVis is used to transform
unorganized K Bs into organized ones, presented in form of responsive visualization
that enhances readability of K B, it’s a perfect tool for this task.

The process of organizing knowledge bases in CluVis is as follows. After im-
porting K B into the application and selecting clustering parameters grouping can
be performed. First selected file is scanned to see weather it has proper format. In
the next step data about attributes is gathered (such information as frequency of
each value of each categorical attribute, maximal and minimal values of continous at-
tributes...) as they are used in some similarity measures. Then rules are transformed
from lines of text into hashmaps, which are basically vectors 2, which are stored as a
singular clusters. Then similarity matrix (which is triangle matrix holding informa-
tion about similarity between i-th and j-th cluster) is built using similarity measure
selected during first phase. Then two the most similiar clusters are joined, and the

2 The i-th variable value is accessed by it’s name in map, not by it’s index

95

B CluVis - Cluster Visualizer =} — O ot

File View Help

Settings Visualization Log

Ohject base information Representative settings

Ohject base: Representative creation strategy:
Mot loaded. (Ungrouped) Threshold =

Objects number:

Attribute occurence (%%):
0.
30 S

General grouping settings
Advanced settings
Grouping algorithm:

Classical AHC

Inter-object distance measure:

Grouped objects type:
RSES LEM2Z Rules
Grouped part:

Gower's measure b
o Conditions -
Inter-cluster similarity measure:
Single Link - o)
Visualization settings
Expected clusters number:
Visualization algorithm:
L = RT Slice And Dice =
[] search for optimal groupings. Objects margin (pax):
[visualize all hierarchy levels.
Standard Group Visualize

Figure 2. CluVis’s GUL

similarity matrix is updated. During merging of two smaller clusters, their represen-
tative is calculated. There may be many possible stop conditions for AHC (e.g. end
when similarity of most similiar objects is equal to 0). CluVis ends clustering after
given (as clustering parameter) number of clusters is reached. The grouping ends
when stop contidion is satisfied (selected number of clusters is formed). As soon as
grouping is complete visualization can be generated.

Graphical representation of clustering can be performed in two ways - with fully
hierarchical view, or not. Visualization is responsive meaning that selecting a cluster
and clicking it with right mouse button will generate new visualization representing
internal structure of selected cluster. Considering that during each step of used AHC
algorithm only two objects are merged usually structure of internals is trivial (large
cluster 4 single object), however, it’s nonetheless a method of exploring K B by diving
deeper into it. To ensure proper direction of diving, one may generate a report from

96

each cluster on current visualization and select one that seems most appropriate.
Sample visualization was presented on figure 1.

5. Experiments

In this section, an experimental evaluation of 3 similarity measures and 4 clustering
methods on 7 different K Bs [15] is presented. Decision rules were generated from the
original data using RSES software and LEM?2 algorithm [14]. The smallest number of
attributes was 5, the greatest 280. The smallest number of rules was 42, the greatest
490.

Table 1. Characteristics of the experimental data.

AttrN | RulesN | ClustersN | UngroupedN
Arythmia 280 154 12,542,52 5,7845,68
Audiology 70 42 6,92+3,02 3,56+2,85
Autos 26 60 7,89+2,25 3,57+2,92
Balance 5 278 1949,00 7,46+8,70
Breast 10 125 11£1,01 5,08+3,35
Diab 9 483 28,74+19,13 | 11,75413,75
diabetes 9 490 29,5+19,64 | 13,584+14,87

Table 2. Data gathered during experiments.

BRS ARS WARS BRL BCS

Arythmia | 151,944,6 | 133,4+11,6 | 2,1£0,2 | 147,4+1,5 | 111,5+41,7

Audiology | 67,0£0,4 | 49,7£1,2 | 1,520,4 | 66,8£0,5 | 29,8%7,8
Autos 11,0£1,9 | 8,6+1,7 | 3,240,6 | 10,7405 | 38,3%£14,0

Balance 440 35404 | 1,4+02 440 180,2493,5
Breast 9+0 7111 | 1,4+0,2 9+0 7.6+32.8
Diab 5,420,5 34108 | 2,940,7 | 4,8%0,6 | 314,8+137,2

diabetes 9,6+0,7 3,3£0,8 2,94+0,7 | 4,9£0,3 | 335,2+140,7

All the details of analyzed datasets are included in table 1 and 2. The meaning of
the columns in table 1 and 2 is following:

Attr N - number of different attributes occuring in permises or conclusions of rules
in given knowledge base.

RulesN - number of rules in examined knowledge base.

ClustersN - number of nodes in dendrogram representing resultant structure.

97

UngroupedN - number of singular clusters in resultant structure of grouping.

BRS - Biggest representative size - number of descriptors used to describe longest
representative.

ARS - Average representative size - average number of descriptors used to describe
cluster’s representatives.

W ARS - Weighted Average representative size (AttrNumber) - division of average
number of descriptors used to describe cluster’s representative in give data set
and number of attributes in this data set.

BRL - Biggest representative length - number of descriptors in biggest cluster’s
representative.

BC'S - Biggest cluster size - number of rules in the cluster that contains the most of
them.

The performance of different similarity measures was evaluated in the context of
knowledge mining using informations like: the number of rules clusters (CN - Clus-
ters number), the number of ungrouped rules (U - Ungrouped objects), the sizes
of the biggest cluster (BiggCluS - Biggest cluster size) as well as its representative
(BiggRepS - Biggest representative size) and the representative the most specific
(BiggRepL - Biggest representative length). More specific means more detailed, con-
taining a higher number of descriptors.

The optimal structure of K Bs with rules clusters should contain the well separated
groups of rules, and the number of such groups should not be too high. Moreover,
the number of ungrouped rules should be minimal. Creating an optimal description
of each cluster (representative) is very important because they are used further to
select a proper group (and reject all the others) in inference process, in order to
mine knowledge hidden in rules (by accepting the conclusion of the given rule as a
true fact). The experimental results verifies the initial hypotheses about the inter
and intra cluster similarity measures. As can be seen from Tables 3 and 4 no single
measure is always superior or inferior. This is obvious since each K B has different
characteristics (different number of attributes and/or rules) as well as different types
of attributes. The use of some measures however, guarantees achieving more general
or more specific representatives for created rules clusters. There are some pairs of
measures that exhibit complementary performance, i.e. one performs well where the
others perform poorly and vice-versa.

Table 3. Influence of inter-cluster similarity measures on respective values.

CN BiggCluS BiggRepL U] BiggRepS
Gower | 16,6+14,1 | 157,2+147.4 | 35,7+51,2 | 8,1£9,9 | 36,44+52,3
SMC | 16,4+14,3 | 155,6+143,6 | 35,4+50,8 | 5,6+£6,7 | 36,3+52,4

WSMC | 22,14+16,5 | 211,54152,8 | 5,7+2,0 | 6,1£9,1 | 6,0+1,9

Table 3 and figure 3 show that choosing different intra-cluster similarity measures
does not influence the overall efficiency (the exception is Jaccard’s index).

98

Ungrouped objects

Values

Gower's measure Weighted Similarity

Simpla Similarity
similarity measure =% Ungrouped objects

Figure 3. Ungrouped rules - interval plot for inter-cluster similarity measures

Table 4 (with figure 4) however shows that the size of the biggest cluster and
the number of ungruped rules depends on the inter-cluster similarity measures. The
experiments confirmed that the SL method produces straggling clusters, called chain-
ing, where clusters may be forced together due to single elements being close to each
other, even though many of the elements in each cluster may be very distant from
each other. CoL, on the other hand, tends to find compact clusters.

Table 4. Influence of intra-cluster similarity measures on respective values.

SL. CL AL CoL,
CN 16,5414,2 | 16,5£14,1 | 16,6£14,1 | 16,6+14,1
U 1214118 | 2,143,1 4,545.2 10,410,9
BigCluS | 213,5+166,2 | 84,0489,8 | 157,24+139,8 | 167,8+142,6
BigRepL | 3544504 | 35,1450,6 | 3544504 | 35,4450,5
BigRepS | 36,0£51,8 | 36,4£51,5 | 36,5515 | 36,5452,2

99

Ungrouped objects
16 T T T .

14}

12

10

Values
[uls]

SL CL AL Col
Clusters similarity measure =% Ungrouped objects

Figure 4. Ungrouped rules - interval plot for intra-cluster similarity measures

6. Summary

This article presents how exploration of complex K Bs can be performed using clus-
tering and visualization of rules clusters and presents the application of clustering as
a knowledge extraction method from real-world data. Clustering a large set of objects
(rules in this case) is not enough when exploring such an enormous amount of data
in order to find some hidden knowledge in it. The extraction of valuable knowledge
from large data sets can be difficult or even impossible. Modularization of K Bs (by
clustering) helps to manage the domain knowledge stored in systems using the de-
scribed method of knowledge representation because it divides rules into groups of
similar forms, context, etc. The authors analyze an influence of different clustering
parameters on the quality of created structure of rules clusters and the efficiency of the
knowledge mining process for rules / rules clusters. In the course of the experiments,
three different similarity measures and four clustering measures have been examined
in order to verify their impact on the size of the created clusters and the size of the
representatives. The experiments have revealed that there is a corelation between the
parameters used in the clustering process and future efficiency levels of the knowledge
mined from such structures: some parameters guarantee to produce shorter/longer
representatives of the created rules clusters as well as smaller/greater clusters sizes.

100

The authors propose to use clusters of rules and visualize them using treemap algo-
rithms and hope that this two-phase way of rules representation allows the domain
experts to explore the knowledge hidden in these rules quicker and more efficiently
than before. In the future, the authors plan to extend the software’s functionality,
especially in the context of parameters used in clustering and visualizing procedures,
as well as importing other types of data sources. It would be easier then to support
human experts in their everyday work by using the created software (CluVis) in work
with many expert systems.

References

Mulawka, J.J., Systemy Ekspertowe. Wydawnictwo Naukowo-Techniczne,
Warszawa, 1996.

Latkowski, R., Mikotajczyk, M., Data decomposition and decision rule joining
for classification of data with missing values. In: Rough Sets and Current Trends
in Computing. vol. 3066 of Lecture Notes in Computer Science., Springer Berlin
Heidelberg, 2004, pp. 254-263.

Morzy, T., Eksploracja danych. Metody i algorytmy. Wydawnictwo Naukowe
PWN, 2013.

Wierzchon, S.T., Klopotek, M.A., Algorithms of Cluster Analysis. Wydawnictwo
IPI PAN, Warszawa, 2015.

S. Boriah, V. Chandola, V.K., Similarity measures for categorical data: A com-
parative evaluation. In Chid Apte, Haesun Park, K.W., Zaki, M.J., eds.: Pro-
ceedings of the 2008 SIAM International Conference on Data Minning, Society
for Industrial and Applied Mathematics, 2008, pp. 243-254.

Gower, J.C., A general coefficient of similarity and some of its properties. Bio-
metrics, 1971, 27, pp. 857-871.

T. Jach, A.N.B., Wnioskowanie w systemach z wiedz niepewn. In: Studia Infor-
matica. vol. 32 No 2A. Wydawnictwo Politechniki Slskiej 2011 pp. 377-389.

Jaccard, P., tude comparative de la distribution florale dans une portion des alpes
et des jura. Bulletin de la Socit Vaudoise des Sciences Naturelles, 1901, 37, pp.
547-579.

Nowak-Brzezinska, A., Mining rule-based knowledge bases inspired by rough set
theory. December 2016, ,, 148(no. 1-2), pp. 35-50.

Rybotycki, T., Visualization of hierarchical structures in rule-based knowledge
bases. March 2015, ,.

[11]

[12]

[13]

[14]

[15]

101

Nowak-Brzeziriska, A., Rybotycki, T., Visualization of medical rule-based knowl-
edge bases. Journal of Medical Informatics & Technologies, 2015, 24, pp. 91-98.

Shneiderman, B., Tree visualization with tree-maps: 2-d space-filling approach.
January 1992, ., 11, pp. 92-99.

Wetzel, K., Pebbles - using circular treemaps to wvisualize disk usage.
http://lip.sourceforge.net /ctreemap.html, 2004.

Bazan, J.G., Szczuka, M.S., Wroblewski, J., A new version of rough set explo-
ration system. In: Rough Sets and Current Trends in Computing. vol. 2475 of
Lecture Notes in Computer Science., Springer Berlin Heidelberg, 2002, pp. 397—
404.

Lichman, M., Machine learning repository. http://archive.ics.uci.edu/ml, 2013
Accessed in October 2016.

Schedae Informaticae Vol. 25 (2016): 103-115

doi: 10.4467/20838476S1.16.008.6189 t | | | 2017
theoretical foundations |
of machine learning, Krakow

Towards Learning Word Representation

MAGDALENA WIERCIOCH
Faculty of Mathematics and Computer Science
Lojasiewicza 6, 30-348 Krakow
e-mail: magdalena.wiercioch@ii.uj.edu.pl

Abstract. Continuous vector representations, as a distributed representations
for words have gained a lot of attention in Natural Language Processing (NLP)
field. Although they are considered as valuable methods to model both semantic
and syntactic features, they still may be improved. For instance, the open issue
seems to be to develop different strategies to introduce the knowledge about the
morphology of words. It is a core point in case of either dense languages where
many rare words appear and texts which have numerous metaphors or similies.
In this paper, we extend a recent approach to represent word information. The
underlying idea of our technique is to present a word in form of a bag of syllable
and letter n-grams. More specifically, we provide a vector representation for each
extracted syllable-based and letter-based n-gram, and perform concatenation.
Moreover, in contrast to the previous method, we accept n-grams of varied length
n. Further various experiments, like tasks-word similarity ranking or sentiment
analysis report our method is competitive with respect to other state-of-the-
art techniques and takes a step toward more informative word representation
construction.

Keywords: representation learning, n-gram model, NLP

1. Introduction

Continuous word representations (embeddings or distributed representations) are
found useful for many Natural Language Processing problems such as information

Received: 11 December 2016 / Accepted: 30 December 2016

104

retrieval or character recognition [1, 2]. Since their quality is strictly connected with
aspects of specific language that is being analyzed, each explored issue in this field
may also lead to improvement of the particular task where given representation is
applied.

Various attempts have been made to investigate learning continuous representa-

tions of words in Natural Language Processing [3, 4]. Most of the earliest approaches
for learning continuous vectors are based on latent semantic derivations [5, 6]. In
particular, its subdomain called distributional semantics where analyzing relation-
ships between a set of documents are considered have been studied extensively in vast
majority of papers [7]. In last years neural network researchers have focused on this
field [8, 9]. The common drawback of these techniques is the fact they associate a
completely distinct vector to each word of the vocabulary. In consequence, the word
characteristic information is lost. Take for instance some of dense (highly inflected)
languages, i.e. Serbo-Romanian, Romanian which create a challenge for researchers
since these languages are seen by linguistics as richly inflected [10]. What is more,
although English is not considered as complex, it may be demanding to learn satis-
factory representation for corpuses with many rhetorical devices.
On the other hand, the idea of applying more detailed information connected with a
given word to a model was presented a few years ago. One of the first approaches to
learn representations using fragments of words was character fourgrams-based method
introduced by Schiitze [4]. In 2003 Bilmes and Kirchhoff investigated factored lan-
guage models, where a word is viewed as a vector of k factors, such as stems, mor-
phological classes, data-driven clusters [11]. Also, several approaches which rely on a
morphological decomposition have been proposed [12, 13]. There is a series of papers
which describe models built using recurrent neural networks [14, 15]. Yet another
class of methods makes use of convolutional neural networks working on characters.
Let us give just a few examples of usage: text classification [16], part-of-speech tagging
[17, 18], language modeling [19], sentiment analysis [20] or text normalization [21].
Recently, the concept of using subwords to form a representation appeared [22, 23].
Another work [24] suggests to guide word-embeddings with morphologically anno-
tated data and shows achievement using German in a case study. Also, many papers
study syllable-based n-gram methods to model language [25, 26].

In this work, we explore another way to learn word representation using combined
character and syllable-level approach. Inspired by the recent works - on continu-
ous bag-of-word model by Mikolov et al. [27] and on using subword information by
Bojanowski et al. [28], we show that combining multiple n-grams types enables to
capture more word-specific features. This paper is an extension to words vector model
proposed by Bojanowski et al. [28]. Our main goal is to check how extra added syl-
lable information to subword vector representation changes the overall reliability of
the model. What is more, the previous paper uses a very simple scheme where only
n-grams of length between 3 and 6 are explored. We does not make such limitations
and in consequence our model is able to distinguish short words as well. In order
to evaluate our approach, we compare several types of continuous representations,
including those made available by other researchers. The evaluation tasks - word
similarity ranking analogies and analogy analysis prove the method to be valuable.
We achieve improvement for Romanian corpus, too.

The most vital advantage of the proposed model is an attempt to describe word

105

more precisely. For instance, according to our approach “in” has a different position
(representation) in word space if it appears as a word itself, and another two locations
in case it appears in two independent fragments of another word, e.g. “painting”.

2. Model architecture

In this section, we present model to learn specific representation that takes words
fragments into account. The proposed representation is an extension of the idea
introduced by Bojanowski et al. [28]. Since the model demonstrated by Bojanowski
itself is derived from continuous Skip-gram (SG) model introduced by Mikolov et al.
in 2013 [8], we first explain how SG works.

Generally, training phase of the Skip-gram model aims at finding word representation
that is useful for predicting the surrounding words in a corpus. Let us denote W =
{wy,ws, ..., ws} as the sequence of training words - vocabulary, S - size of vocabulary.
The goal of the Skip-gram model is to maximize the average log probability

S

(W) =" log p(we|w),

t=1ceC;y

where C; refers to the context, i.e. the words which surround wy.

The probability of observing a context word w,. given w; is parametrized using the
word vectors. Given a scoring function s, which maps pairs of (word, context) to value
in R, a possible choice to define the probability of a context word is the softmax.

In a basic form the probability of the output context word Context having input
Word is defined using the softmax function

-
eWe Wt

where we¢, wy, w; are vector representations of words and y. is the output of the
c-th neuron of the output layer. In practice this formula is not used because of
the computational costs. However, an efficient alternative to softmax is Negative
sampling, a simple version of Noise Contrastive Estimation (NCE) [29]. While NCE
requires from the model to differentiate data from noise by means of logistic regression,
Negative Sampling aims only at obtaining high quality representation. Thus, in terms
of neural probabilistic language model one may formulate the conditional distribution
corresponding to context word ¢

eso (w;r we)
PGC = S so(w]we)’
Zj:l e !
where sg() is called scoring function that assesses how the word w; is compatible with
the context w.. The parametrization for the scoring function is done by taking the

106

Figure 1. The Skip-gram model architecture with 4 context words considered. The
learnt representation enables to predict surrounding words given the current input
word “words”.

input layer hidden layer outpuf layer

1

Wy

distributed representations of werds in a vector space . ..

o] e wy O3 04

scalar product between word and context embeddings: s(Word, Context) = w, w.'.

Since the rest of the work uses the concept of letter n-grams and syllable n-grams,
they shall be explained.
Letter n-grams

In our paper a letter n-gram is a contiguous sequence of n characters from a given
string. As explained in Subsection “Fragmentation model”, we use n-grams of several
different lengths. In order to distinguish the beginning of a word and the ending of
word we append blank spaces to the beginning and the end of the word. Let’s take
word "TEST’ for example. Note that here the underscore (-) represents the blank
space. The following n-grams should be expected.

bigrams : T, TE, ES, ST, T_
trigrams : TE,TES,EST,ST_,T__
4 —grams: TES, TEST, EST_,ST__,T___

Syllable n-grams
The syllable n-gram is seen as a contiguous sequence of n syllables in a given string.
In general, the task of defining the syllable raises some controversy [30, 31]. This
work employs the procedure proposed by Daelemans et al. in [32].

1 Both we and wy are vector representations in R4,

107

Fragmentation model

We notice two possible extensions of Bojanowski et al. approach [28]. Firstly, as
the authors suggest, the Skip-gram model ignores the internal structure of words.
So, they associate a vector representation z, to each n-gram g. However, we claim
it may be insufficient for short and rare words. In this section, we thus propose to
extend such a representation by taking syllable n-grams into consideration. Given a
word w, let us denote by G,, = {1,...,G} the set of letter n-grams which appear
in w (as Bojanowski et al. done). Similarly, let H, = {1,..., H} to be the set of
syllable n-grams which appear in w. Now, we associate a vector representation z, to
each letter n-gram g and a vector representation z; to each syllable n-gram h. The
new word representation is considered as the direct concatenation of the two vector
representations of its n-grams (letter and syllables):

Znew = [Zga Zh].
In consequence, the scoring function is
+
s(w,c) = E ZnewVe-
new€G, UH,,

Secondly, in the model demonstrated by Bojanowski n-grams of length k are only
considered, where 3 < k < 6. Our analysis show it may negatively affect the final
representation reliability. Thus, the upgraded model makes use of n-grams of varied
length n.

3. Experiments

Table 1. Spearman’s correlation coefficient for the word similarity task.

dataset RNNLM NCE CBoW Sg Ft our

WS353 (en) 0.42 045 048 047 0.5 0.5

SimVerb-3500 (en) 0.44 0.46 0.44 0.47 0.47 0.47
Sim999 (en) 0.44 0.45 045 0.46 045 0.45
RG65 (en) 0.39 0.4 0.43 0.46 046 0.47
SGS130 (en) 0.45 048 0.5 049 0.5 0.5

YP130 (en) 0.43 0.45 0.44 0.47 0.48 0.48
Gur30 (ge) 0.45 046 0.49 0.51 0.51 0.51
Gur65 (ge) 0.45 047 0.52 0.54 0.54 0.55
7.G222 (ge) 0.5 0.53 0.53 0.55 0.56 0.56
RO353 (ro) 0.51 0.55 0.57 0.59 059 0.61

We conducted a series of experiments to compare the performance of our approach
with several strong baseline representations learned on a fixed dataset on different

108

Table 2. Semantic analogies task results. The accuracy specified as %.

dataset RNNLM NCE CBoW Sg Ft our
WS353 (en) 15.3 24.2 0.23.8 28 275 275
SimVerb-3500 (en) 20.1 26.7 30.6 34.5 34.5 34
Sim999 (en) 18.3 21.2 29.8 24.3 248 24.8
RG65 (en) 29.7 35.2 39.1 42 42 42
SGS130 (en) 35.2 413 47 56.1 56.1 56.1
YP130 (en) 46.4 42.6 43.6 56.3 56.3 56.3
Gur30 (ge) 37.2 61.2 38.7 46.7 46.7 46.7
Gur65 (ge) 39.8 34.2 447 46.9 46 46
7G222 (ge) 41.7 36.2 55.3 52.6 52.6 52.2
RO353 (ro) 43.9 50 46.6 60.4 60.1 60.1

Table 3. Syntactic analogies task results. The accuracy specified as %.

dataset RNNLM NCE CBoW Sg Ft our

WS353 (en) 24.7 30.2 335 40.9 402 40.2
SimVerb-3500 (en) 31.6 33.9 372 52 52 52

Sim999 (en) 26 32 55 49.8 49.3 495
RG65 (en) 35.6 40.2 407 48.9 48.9 48.9
SGS130 (en) 38.4 59 43.2 49.6 49.6 49.6
YP130 (en) 32.3 37.8 45.8 50.3 50.3 50.3
Gur30 (ge) 30.1 35.2 40.9 49.3 49.3 49.3
Gur65 (ge) 24 35.7 473 62.5 62.5 62.5
7G222 (ge) 38.7 45.3 56.9 67.2 67.2 67.1
RO353 (ro) 30.6 41,7 59.2 531 531 53.1

tasks. In our experiments we used benchmarks of three languages, i.e. English, Ger-
man and Romanian. For English, we evaluated word vectors on the following datasets:
WS353 [33], SimVerb-3500 [34], Sim999 [35], RG65 [36], SGS130 [37], YP130 [38]. For
German, the models were compared on datasets: Gur30, Gur65 [39], ZG222 [40]. For
Romanian, the translated version of WS353 was used [41] (RO353). The data con-
tains word pairs along with human-assigned similarity judgements. We compared
our approach with 5 baseline representations. These include a model based on re-
current neural network (RNNLM) from 2010 [42] and a method trained using Noise
Contrastive Estimation (NCE) presented in [43]. We also took into account two log
bilinear methods by Mikolov, i.e. Continuous Bag of Words (CBoW) and mentioned
here previously Skip-gram (SG) [8]. Finally, the implementation of the model pro-
posed by Bojanowski et al. (Ft) was examined [28]. Apart from NCE case, we used
publicly available codes of mentioned models.

Setup details
In order to provide a reliable comparison, all the methods were trained on the same
datasets. For the baseline methods we used default settings presented in papers with a

109

couple of exceptions. They include a context window of 6 words (both left and right).
Additionally, the learning rate was fixed to 3 x 10 and the vector representations had
the dimension 200.

Similarity judgement task

The most widely used method of representation quality evaluation is Spearman’s rank
correlation coefficient [44]. It enables to assess how well the given representations
capture word similarity. For instance, “popular” and “famous” are supposed to be
closer each other than “trendy” and “fruit”. Thus, according to standard techniques,
we calculated cosine distance between word pairs in datasets and reported Spearman’s
rank correlation coefficient between the rankings obtained from the models and human
rankings. Table 1 yields the results for the word similarity task. It can be observed
that our method slightly outperformed the baseline models in 3 cases. Two of them
refer to German and Romanian, so it suggests the proposed technique better describes
dense languages (note that German is much more dense than English).

(a) RO353 (b) 2G222

E—— - sg

5 3 3 O 5
epoch epoch

(c) SimVerb-3500 (d) WS353

Figure 2. The plots of performance versus training epoch for word similarity task.

Word analogy task
Another methods of evaluation are so-called analogy tasks [27]. They enable to assess
syntactic and semantic relations between words. In practice, there are sets of questions
and each question contains a missing word. The goal is to predict this word. The
example of semantic question could be “brother” <+ — “sister” ; “grandson” +—
“granddaughter”, where the word “granddaughter” has to be predicted. According
to [27], it is sufficient to obtain the vector v = aprother — Gsister +Ggrandson- We assume
the answer is correct if the calculated vector v has high cosine similarity if compared
to the good answer. The results for semantic and syntactic analogy tasks are listed

110

Table 4. Spearman’s correlation coefficient for the word similarity task with a much
more bigger corpus (200M tokens) and different length of vector representation.

representation length Sg Ft our

200 0.61 0.65 0.65
300 0.64 0.69 0.73
400 0.66 0.71 0.75
500 0.7 076 0.81
600 0.72 0.83 0.86

Table 5. Semantic analogies task results with a much more bigger corpus (200M
tokens) and different length of vector representation. The accuracy specified as %.

representation length Sg Ft our

200 60.2 65.7 70.1
300 63.1 66.4 68.1
400 69.7 73.5 75.2
500 73.4 772 81.1
600 7 82.3 84.8

in Table 2 and 3, respectively. In fact, our method did not overcome any competing
model. Nevertheless, it gave similar results to other Skip-gram based approaches. It
shows it may be worth to explore the method’s performance on more dense languages.
As one may observe, the previous experiments showed that the most significant
results were achieved by Sg, F't and our approach. Thus, we explored these methods
more deeply in the next analysis. First of all, during the experiments we noticed that
different models converged at different rates. Figure 2 plots the performance of the
word similarity task on selected datasets after a specified number of epochs (2-8).
The chart demonstrates that the all three models converge quickly to a satisfactory
level of performance. Nevertheless, it appears that our approach yields more reliable
results. This suggests that if training was done on more data, the representation
could work better. Inspired by this observation, a few other experiments were carried
out. We evaluated 3 representations, i.e. Sg, Ft, and our approach. The following
tasks were undertaken: word similarity, syntactic and semantic analogies. They were
trained on Wikipedia sets which contain 200M tokens 2. The summary results of
evaluations that consider vector space dimensions from 200 to 600 are presented in
Table 4, 5 and 6. It is interesting to note that our model is in the vast majority of
cases better than Sg and Ft. It performs favorably for either word similarity task
(Table 4) or semantic analogies task (Table 5). Although the efficiency of our model
on the syntactic analogies task is not strong, it provides some improvements, see Table
6. All in all, the results suggest that our approach benefits from a bigger corpus.
Finally, for our approach and Skip-gram method proposed by Bojanowski et al.
we projected the learned word representations into two dimensions using the t-SNE

2 https://dumps.wikimedia.org/

111

Table 6. Syntactic analogies task results with a much more bigger corpus (200M
tokens) and different length of vector representation. The accuracy specified as %.

representation length Sg Ft our

200 554 571 57.6
300 58.2 59.3 59
400 64.3 67.8 69.3
500 69.1 73.2 73
600 726 769 77.1

Figure 3. Two dimensional projections of our method and Bojanowski-based (right)
word representations. Words associated with “fruit” are colored in grey, words asso-
ciated with “vegetable” are colored in black. We can see that “fruit” and “vegetable”
words are clustered correctly. However, our approach performs slightly better.

potato carrot

tomato ca pepper tomato broccoli com
potato broccoli . coth cabbage
: epper ~ Omion selery lettuce
onion com p celery ettuce
othIce cucumber
leawlsgze carrot .
= - o) I 1 rem
celery cauliflower pea
cauliflower
strawberry cucumber banana
raspberty T rasph§herry
plum CIHAR
lpon POT

) grape orange

aranil peach) peach

grape orange fig mango pear
banana - .

) avocado
mango avocado avorads plum

tool [45]. Figure 3 shows projections of the words related to the concept fruit vs.
vegetable. The visual inspection demonstrates that all words were assigned to their
groups correctly. However, the position of “peach” and “orange” seems to be more
adequate if our model is considered.

4. Conclusion

In this paper, we propose method to learn word representations that considers frag-
ments of words, including syllables and characters to built the model. We showed
that our method outperforms state-of-the-art approaches on dense languages when
tasks such as word similarity ranking or syntactic and semantic analogies are taken
into consideration.

112

Acknowledgment

This research was partially supported by National Centre of Science (Poland) Grants
No. 2016/21/N/ST6/01019.

[10]

References

Miller, S., Guinness, J., Zamanian, A., Name tagging with word clusters and
discriminative training. In: Proceedings of HLT, 2004, pp. 337-342.

Vitz, P.C., Winkler, B.S., Predicting the judged similarity of sound of english
words. Journal of Verbal Learning and Verbal Behavior, 1973, 12(4), pp. 373 —
388.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., Neurocomputing: Foundations
of research. MIT Press 1988 pp. 696-699.

Schiitze, H., Dimensions of meaning. In: Proceedings of the 1992 ACM/IEEFE
Conference on Supercomputing. Supercomputing ’92, Los Alamitos, CA, USA,
IEEE Computer Society Press, 1992, pp. 787-796.

Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R., In-
dexing by latent semantic analysis. JOURNAL OF THE AMERICAN SOCIETY
FOR INFORMATION SCIENCE, 1990, 41(6), pp. 391-407.

Hofmann, T., Probabilistic latent semantic indexing. In: Proceedings of the 22Nd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’99, New York, NY, USA, ACM, 1999, pp. 50-57.

Baroni, M., Lenci, A., Distributional memory: A general framework for corpus-
based semantics. December 2010, ,, 36(4), pp. 673-721.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J., Distributed rep-
resentations of words and phrases and their compositionality. In Burges, C.J.C.,
Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q., eds.: Advances in
Neural Information Processing Systems 26. Curran Associates, Inc. 2013 pp.
3111-3119.

Pennington, J., Socher, R., Manning, C.D., Glove: Global vectors for word rep-
resentation. In: Empirical Methods in Natural Language Processing (EMNLP),
2014, pp. 1532-1543.

Rehm, G., Uszkoreit, H., The Romanian Language in the Digital Age. Springer
Publishing Company, Incorporated, 2012.

[11]

[22]

23]

113

Bilmes, J.A., Kirchhoff, K., Factored language models and generalized parallel
backoff. In: Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language Technol-
ogy: Companion Volume of the Proceedings of HLT-NAACL 2003-short Papers
- Volume 2. NAACL-Short '03, Stroudsburg, PA, USA, Association for Compu-
tational Linguistics, 2003, pp. 4-6.

Botha, J.A., Blunsom, P., Compositional Morphology for Word Representations
and Language Modelling. In: Proceedings of the 31st International Conference
on Machine Learning (ICML), jun 2014, ,, *Award for best application paper*.

Luong, M.T., Socher, R., Manning, C.D., Better word representations with re-
cursive neural networks for morphology. In: CoNLL, Sofia, Bulgaria, 2013.

Mikolov, T., Sutskever, I., Deoras, A., Le, H.S., Kombrink, S., Cernocky, J.,
Subword language modeling with neural networks. preprint (http://www. fit.
vutbr. cz/imikolov/rnnlm/char. pdf), 2012.

Sutskever, 1., Martens, J., Hinton, G.E., Generating text with recurrent neu-
ral networks. In: Proceedings of the 28th International Conference on Machine
Learning (ICML-11), 2011, pp. 1017-1024.

Zhang, X., Zhao, J., LeCun, Y., Character-level convolutional networks for text
classification. In: Advances in Neural Information Processing Systems, 2015, pp.
649-657.

Ling, W., Luis, T., Marujo, L., Astudillo, R.F., Amir, S., Dyer, C., Black, A.W.,
Trancoso, 1., Finding function in form: Compositional character models for open
vocabulary word representation. arXiv preprint arXiv:1508.02096, 2015.

dos Santos, C.N., Gatti, M., Deep convolutional neural networks for sentiment
analysis of short texts. In: COLING, 2014, pp. 69-78.

Kim, Y., Jernite, Y., Sontag, D., Rush, A.M., Character-aware neural language
models. arXiv preprint arXiv:1508.06615, 2015.

dos Santos, C.N., Zadrozny, B., Learning character-level representations for part-
of-speech tagging. In: ICML, 2014, pp. 1818-1826.

Chrupala, G., Normalizing tweets with edit scripts and recurrent neural embed-
dings. In: Proceedings of the 52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), Baltimore, Maryland, June 2014,
,» PD. 680-686.

Luong, M.T., Manning, C.D., Achieving open vocabulary neural machine transla-
tion with hybrid word-character models. arXiv preprint arXiv:1604.00788, 2016.

Sennrich, R., Haddow, B., Birch, A., Neural machine translation of rare words
with subword units. In: Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers, 2016.

114

24]

[25]

[26]

[27]

(28]

[29]

[30]

31]

32]

Cotterell, R., Schiitze, H., Morphological word-embeddings. In: Proc. of NAACL,
2015.

Sakamoto, N., Yamamoto, K., Nakagawa, S., Combination of syllable based n-
gram search and word search for spoken term detection through spoken queries
and iv/oov classification. Dec 2015, ,, pp. 200-206.

Wechsler, M., Munteanu, E., Schauble, P., New techniques for open-vocabulary
spoken document retrieval. In: Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’98, New York, NY, USA, ACM, 1998, pp. 20-27.

Mikolov, T., Chen, K., Corrado, G., Dean, J., Efficient estimation of word rep-
resentations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Bojanowski, P., Grave, E., Joulin, A., Mikolov, T., Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606, 2016.

Gutmann, M.U., Hyvéarinen, A., Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics. Journal of Ma-
chine Learning Research, 2012, 13(Feb), pp. 307-361.

Crystal, D., Dictionary of linguistics and phonetics. vol. 30. John Wiley & Sons,
2011.

Mayer, T., Toward a totally unsupervised, language-independent method for the
syllabification of written texts. In: Proceedings of the 11th Meeting of the ACL
Special Interest Group on Computational Morphology and Phonology, Association
for Computational Linguistics, 2010, pp. 63—71.

Daelemans, W., van den Bosch, A., Generalization performance of backprop-
agation learning on a syllabification task. In: Proceedings of the 3rd Twente
Workshop on Language Technology, Universiteit Twente, Enschede, 1992, pp.
27-38.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,
Ruppin, E., Placing search in context: The concept revisited. In: Proceedings of
the 10th international conference on World Wide Web, ACM, 2001, pp. 406—414.

Gerz, D., Vuli¢, 1., Hill, F., Reichart, R., Korhonen, A., SimVerb-3500: A Large-
Scale Evaluation Set of Verb Similarity. In: EMNLP, 2016.

Hill, F., Reichart, R., Korhonen, A., Simlez-999: Evaluating semantic models
with (genuine) similarity estimation. Computational Linguistics, 2016.

Rubenstein, H., Goodenough, J.B., Contextual correlates of synonymy. October
1965, ,, 8(10), pp. 627-633.

Szumlanski, S.R., Gomez, F., Sims, V.K., A new set of norms for semantic
relatedness measures. In: ACL (2), 2013, pp. 890-895.

Yang, D., Powers, D.M., Verb similarity on the taxonomy of WordNet. Masaryk
University, 2006.

[39]

[40]

115

Gurevych, 1., Using the structure of a conceptual network in computing seman-
tic relatedness. In: International Conference on Natural Language Processing,
Springer, 2005, pp. 767-778.

Zesch, T., Gurevych, 1., Automatically creating datasets for measures of semantic
relatedness. In: Proceedings of the Workshop on Linguistic Distances. LD 06,
Stroudsburg, PA, USA, Association for Computational Linguistics, 2006, pp.
16-24.

Hassan, S., Mihalcea, R., Cross-lingual semantic relatedness using encyclopedic
knowledge. In: Proceedings of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing: Volume 3-Volume 8, Association for Computational
Linguistics, 2009, pp. 1192-1201.

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., Khudanpur, S., Recurrent
neural network based language model. In: Interspeech. vol. 2., 2010, pp. 3.

Mnih, A., Teh, Y.W., A fast and simple algorithm for training neural probabilistic
language models. arXiv preprint arXiv:1206.6426, 2012.

Spearman, C., The proof and measurement of association between two things.
American Journal of Psychology, 1904, 15, pp. 88-103.

Maaten, L.v.d., Hinton, G., Visualizing data using t-sne. Journal of Machine
Learning Research, 2008, 9(Nov), pp. 2579-2605.

Schedae Informaticae Vol. 25 (2016): 117-126

doi: 10.4467/20838476S1.16.009.6190 t | | | 2017
theoretical foundations
of machine learning, Krakow

Uniform Cross-entropy Clustering

MACIEJ BRZESKI, PRZEMYSLAW SPUREK!
Faculty of Mathematics and Computer Science
Jagiellonian University, Lojasiewicza 6, 30-348 Krakéw, Poland
e-mail: maciej.brzeski@doctoral.uj.edu.pl , przemyslaw.spurek@uyj.edu.pl

Abstract. Robust mixture models approaches, which use non-normal distri-
butions have recently been upgraded to accommodate data with fixed bounds.
In this article we propose a new method based on uniform distributions and
Cross-Entropy Clustering (CEC). We combine a simple density model with a
clustering method which allows to treat groups separately and estimate pa-
rameters in each cluster individually. Consequently, we introduce an effective
clustering algorithm which deals with non-normal data.

Keywords: Clustering, Cross-entropy, Uniform distribution

1. Introduction

Clustering plays a basic role in many parts of data engineering, pattern recognition,
and image analysis. One of the most important clustering methods is the density
approach [1, 2]. Most of such algorithms are based on Gaussian Mixture Model [3],
which uses Expectation-maximization (EM) procedure [4]. The mixture components
describe individual clusters in the data space. Gaussian components are traditionally
successful in detecting elliptic clusters [3, 4, 5]. However, groups of a different shapes
require a solution with involved components of other distributions.

Received: 11 December 2016 / Accepted: 30 December 2016
1 The work of this author was supported by the National Science Centre (Poland) Grant No.
2015/19/D/ST6,/01472.

118

The growing need for more flexible tools to analyze datasets that exhibit non-
normal features, including asymmetry, multimodality, heavy tails, and fixed bounds,
has led to intense development of non-normal model-based methods. The mixture
model-based clustering literature has focused on the development of mixture distri-
butions with more flexible parametric components like split distributions [6, 7], skew
distributions [8, 9, 10] and some other non-elliptical approaches [11, 12, 13].

The same situation occurs in the case of clustering non-negative or in some way
limited data. To take into account such a feature, components should have a limited
support. Therefore, we use the uniform distribution, which well covers clusters in the
shape of rectangle. Estimation of data models with the bounded support including
uniform ones was studied in various domains: clustering [14], individual state-space
and regression models [15, 16] as well as mixture models [17]. In mixture-based clus-
tering approach the challenging task is updating parameters of uniform components.
Intuitively, the prior chosen bounds of the uniform distribution are only expandable,
but they are not floating (limited support). Therefore, estimating a uniform mixture
is very hard.

In this paper we construct a new clustering model Uniform Cross-Entropy Clus-
tering (UCEC), which try to solve these problems. First of all, we use simple multi-
dimensional uniform distribution, see Fig. 1. More precisely, we use uniform pdf for
independent variables, which is a product of univariate marginal pdfs, and the distri-
bution will have generally the rectangle support. Furthermore, simpler optimization
procedure known as Cross Entropy Clustering (CEC) [18] is used instead of EM.

A goal of CEC is to optimally approximate the scatter of data set X C R¢ by the
function which is a small modification of EM (for more information see Section 2.). It
occurs that at the small cost of having a minimally worse density approximation [18],
we gain the ease of using more complicated density models. The method is capable
of the automatic reduction of unnecessary clusters (contrary to EM each group has
its cost). Moreover, we can treat clusters separately which is more effective from a
numerical point of view.

This paper is arranged as follows. First the theoretical background of UCEC
method is presented. We introduce the cost function which we need to minimize.
Moreover, we present three strategies to escape from local minima to reach a better
minimum. In the last part numerical experiments are presented.

(a) GMM (b) UCEC

Figure 1. The result of our approach and classical GMM in the case of the L-type
dataset.

119

2. Theoretical background of UCEC

In this section the UCEC method will be presented. First, we introduce the cost
function which will be optimized by the algorithm.

Our approach is based on the CEC [18]. Therefore, we start with a short intro-
duction to the method. Since CEC is similar to EM in many aspects, let us first recall

k
that, in general, EM aims to find p1,...,pr >0, > p; = 1 and f1,..., fr Gaussian
i=1
densities (where k is given beforehand and denotes the number of densities for which
the convex combination builds the desired density model) such that the convex com-
bination f = p1f1+. ..+ pifr optimally approximates the scatter of our data X with
respect to the MLE cost function

MLE(f, X) == In(p1fi(x) + ... + pefu(x)). (1)

xeX

A goal of CEC is to minimize the cost function, which is a minor modification of
that given in (1) by substituting the sum with the maximum:

CEC(f,X) = — Y In(max(p1 f1(x), - .., prfr(x))). (2)

xeX

Instead of focusing on the density estimation as its main task, CEC aims directly at the
clustering problem. It occurs that a small cost of having a minimally worse density
approximation [18], we obtain numerical efficient method. We can often use the
Hartigan approach to clustering, which is faster and typically finds better minimums.
This is an advantage, roughly speaking, because the models do not mix with each
other since we take the maximum instead of the sum.

To apply CEC, we need to introduce the cost function which we want to minimize.
To do so, let it be recalled that by the cross-entropy of data set X C R? with respect
to density f is given by

H*(X|f) = |X‘ > In(f(

xeX

In the case of splitting X C R% into X7, ..., X} so that we describe elements of X;
using a function from the family of all multidimensional uniform densities U/ (R?).

As it was mentioned, we use simple multidimensional uniform distributions. Let
us start from one dimensional density

— ZE€
vean={ F7 150

for a,b € R.
For a dataset X C R the maximum likelihood (ML) estimation of parameters
a,b € R of uniform distribution is given by maximal and minimal elements of X [19].
In our work we use multidimensional uniform distribution, which is product of
univariate marginal pdfs.

120

Definition 2..1. For a vector x € R? the multidimensional uniform distribution is
given by

d
Ua(x;a,b) = HU(xj;aj,bj),
j=1
forx =[z1,...,2q] €RY a=ay,...,aq) € R, b =[by,...,b4] € R where a; < b;
fori=1,...,d.

Similar to the one dimensional case the maximum likelihood estimators are given
by by maximal and minimal elements of X [19].

Theorem 2..1. Let X = {x1,...,X,} be a random sample from Uy(x;a,b). Then
the mazimum likelihood estimators of a and b are

Aé = min(X) = [min(X1'),..., min(X%)]

b = max(X) = [max(X1),..., max(X9)].
The support of uniform density distributions Uy(x; a, b) is hyperrectangle
supp(Ua(x; 2, b)) = {Ua(x;a,b) # 0,2 € R} = [a1,b1] X ... X [ag, ba)-

Therefore, for given uniform distribution Uy(x;a, b) volume of his support is equal to
Via(siab) = |01 —ai1| - ... - [bg — aq]. Now we are ready to present the cost function,
which will be used in our algorithm

E(X1,..., X URY)) = épi (= In(p:) + H*(X;|U(RD))), (3)

where p; = 3 and H* (X[|JU(R?)) = inf yeyyay H* (X).
The aim of CEC is to split dataset X into subsets X; which minimize the function
given in (3). It is easy to see that in the case of one cluster X, the cross-entropy is

equivalent to the log-likelihood function:

H (X Uaa.b)) =~y & In(Ua(a.b) = =y In(L(X:a. b))
pNS
Consequently, we can minimize cross-entropy by maximizing log-likelihood. This
approach allows us to fit optimal parameters in each cluster and minimize the cost
function (3).
In the case of uniform distributions the formula for negative log-likelihood function
is given as follows

1

H*(X[|Ua(a, b)) = X

1
In(L(X;a,b)) = X > In(Ua(x,a,b)) = In (Vir, (xiab)) -
xeX

Therefore, our cost function depends on the volume of the support of densities which
describes clusters:

k
E(Xl, e ,X]“Z/[(Rd)) = Zp,b (— hl(pl) —|— ln(VUd(x;ai,bi))) B

i=1

121

where a; = min(X;),b; = max(X;).

Let us now introduce the algorithm step by step. The UCEC method starts from
an initial clustering, which can be obtained randomly or with use of the k-means+-+
approach.

In our work we use the Hartigan method [20, 21, 22]. The aim of Hartigan method
is to find partition Xi,..., X, of X which cost function (3) is as close as possible to
the minimum by subsequently reassigning membership of elements from X.

To explain Hartigan approach more precisely we need the notion of group mem-
bership function gr : {1,...,n} — {0,...,k}, which describes the membership of i-th
element, where 0 value is a special symbol which denotes that x; is as yet unassigned.
In other words: if gr(i) =1 > 0, then x; is a part of the I-th group, and if gr(i) =0
then x; is unassigned.

Basic idea of Hartigan is relatively simple — we repeatedly go over all elements of
X and apply the following steps:

e if the chosen element x; is unassigned, assign it to the first nonempty group;
e reassign x; to these group, which decrease cost function;

e check if no group needs to be removed/unassigned, if this is the case unassign
its all elements;

until no group membership has been changed.

To implement Hartigan approach for discrete measures we still have to add a con-
dition when we unassign given group. For example in the case of Uniform clustering
in R? to avoid overfitting we cannot consider clusters which contain less then d + 1
points. In practice while applying Hartigan approach on discrete data we usually
removed clusters which contained less then three percent of all data-set.

Observe that in the crucial step in Hartigan approach we compare the cross-
entropy after and before the switch, while the switch removes a given set from one
cluster and adds it to the other. It means that to apply efficiently the Hartigan
approach in clustering it is essential to update parameters.

To calculate cost function we need to calculate minimum and maximum for every
dimension of new clusters. If we use simple arrays to keep data, it will take O(d-k-n?)
time per loop (k is number of clusters, d dimension of data). So we use BST tree
for every dimension, which gives us min and max in O(Inn) time. Moreover, we can
calculate maximum only after switching point - for change cost function we can just
take maximum of current maximums and added point. It enable to decrease time per
loop to O(n - d(lnn + k)).

In classical Hartigan approach we switch elements one by one. In the case of
uniform distribution this approach is ineffective since the algorithms stacks in local
minimums. The effect is caused by the finite support of uniform distributions. In most
cases switching one point does not decrease the size of hyperrectangle. Therefore, we
consider three possible scenarios of switching points. The classical UCEC switch only
one point. In the second version random UCEC (UCEC-r), we sometimes randomly
move some points to another class and minimize it using Hartigan again. It gives
better results, but it is time consuming, especially when we apply many random
switches.

122

In the third version multi-points movement UCEC (UCEC-m), we move subsets
of points which lie in the borders of supports of uniform densities. The motivation
for the solution comes from the observation that for two clusters X1, Xo C R% which
supports have nonempty intersection, it is profitable to add all points from intersection
to the same cluster.

Theorem 2..2. Let X1, X5 C RY such that X1 N Xy = 0, X1UXy =X be given. Let
Xn = X Nsupp(Ug(ag, br)) Nsupp(Ug(ag, ba)) # 0

where a1 = min(X;),b; = max(X1),a2 = min(Xs),bs = max(Xs) be such that
XA C Xy and E(Xq, X2, U(R?)) < B(X; \ Xn, Xo U X, URY)). Then

E(X1, X2, URY) < E(Y1, Y2, URY)),

for any other clustering such that min(X;) = min(Y7), max(X;) = max(Y1), min(Xs) =
min(Y5), max(Xs) = max(Ys).

06 06 06
04 04 04
00 02 04 06 08 To o 02 04 06 08 To oo 02 04 06 08 To

(a) GMM (b) CEC (¢) Uniform EM

o0 02 04 06 08 1o oo 0z 04 06 08 1o oo 0z 04 06 08 To

(d) UCEC () UCEC-r (f) UCEC-m

Figure 2. The effect of different clustering algorithms in the case of E-type dataset.

Proof. Cross entropy is equal to:
E(Xla X27U(Rd)) =p- (_ ln(p) + VUd(x;al,bl)) + (1 - p) ' (_ ln(l _p) + VUd(X;a'z,bz))
V Xia V Xia:
=p-In (Ud(: 1"’1)) +(1-p)-In (Ud< | 2"’”) .
p

1-p

We consider only such clustering which does not change maximal and minimal
values in cluster. Therefore, value of a cost function depends only on p. We can
consider a simpler function

s =pn (D) ra-pom (1),

123

where V7, V5 are constant. By analyzing the first derivative of f

oyt (A . 2V (2 iz V2
f(p)—ln<p> p 1()+(1) v =

) u()
p 1-p)’

we obtain that f has one local maximum and no local minimums. Therefore minimum
is at one of ends of domain. As a simple corollary we obtain that E(X;, Xa,U(R%))

obtain minimum when all points from X~ are in one cluster. O
data ol 08 GMM CEC U-EM UCEC UCEC UCEC-m
function
avg 1-1 0,479 0,588 -0,057 0,487 0,541 0,579
4 AIC -3206 -3974 424 -3259 -3625 -3884
BIC -3089 -3943 540 -3143 -3509 -3768
avg 1-1 0,506 0,736 -0,070 0,483 0,457 0,606
5 AIC -3377 -4973 504 -3224 -3045 -4057
D BIC -3230 -4931 590 -3077 -2898 -3910
avg 1-1 0,627 0,798 -0,055 0,473 0,600 0,679
6 AIC -4192 -5387 378 -3149 -4008 -4545
BIC -4014 -5338 403 -2972 -3830 -4367
avg 1-1 0,440 0,695 0,284 0,368 0,393 0,839
4 AIC -2176 -3487 -1384 -1813 -1941 -4186
BIC -2065 -3452 -1274 -1702 -1831 -4074
avg 1-1 0,609 0,829 0,329 0,488 0,534 0,972
5 AIC -3019 -4159 -1627 2410 -2589 -4846
B BIC -2880 -4118 -1546 -2270 -2449 -4706
avg 1-1 0,631 0,829 0,379 0,645 0,677 1,073
6 AIC -3117 -4159 -1878 -3191 -3348 -5345
BIC -2948 -4118 -1797 -3021 -3179 -5176
avg 1-1 1,121 1,273 0,506 0,961 1,243 1,351
4 AIC -4460 -5097 -2010 -3816 -4950 -5381
BIC -4353 -5063 -1959 -3710 -4843 -5274
avg 1-1 1,164 1,315 0,504 1,141 1,255 1,419
5 AIC -4623 -5262 -2005 -4528 -4986 -5644
L BIC -4489 -5223 -1955 -4394 -4851 -5510
avg 1-1 1,160 1,332 0,504 1,077 1,287 1,432
6 AIC -4597 -5327 -2005 -4264 -5106 -5685
BIC -4435 -5283 -1955 -4101 -4944 -5523

Table 1. The results of classical algorithms in the case of letter-type data.

In natural way it is impossible to verify all possibles subsets which lies in the
borders of clusters. But we can take advantage by using Theorem 2..2 Therefore

124

instead of considering one point we will use all elements which lie in the intersection
of supports of considered clusters. k-d trees [23] can be used to increase performance
and enable faster search.

Thanks to above modifications and suitable data structures (like k-d trees or BST
trees) we obtain effective algorithm for clustering datasets by uniform distributions.

3. Experiments

In this section, we present a comparison of our method with different scenario (UCEC,
UCEC-r, UCEC-m) and classical clustering algorithms k-means, GMM, CEC and
uniform EM.

In the first example we use letters type datasets (D, E and L), see Fig. 2. To
compare the results, we use the standard Bayesian Information Criterion BIC' =
?72LL + k1n(n) and Akaike Information Criterion AIC = ?2LL + 2k, where k is the
number of parameters in the model, n is the number of points, and LL is a maximized
value of the log-likelihood function. We need a number of parameters which are used
in our model. The UCEC model uses two scalars for minimal and maximal value for
each dimensions k- 2d. The results of our experiment are presented in Table 1. In the
case of letters which contains uniform distributions on rectangles (letters E and L)
our approach (UCEC-m) gives the best results. On the other hand, if data contains
curve types structures (letter D) classical approaches fit data with higher precision.

scoring

data > km GMM CEC UEM UCEC UCECr UCECm
artand 0,730 0,758 0,901 0512 0,772 0,772 0,772
i avg 11 - 2,058 -1,208 -3,608 -2270 -2.27 2,27
AIC - 670 386 1134 733 733 733
BIC . 748 422 1213 811 811 811
arand 0,491 0,755 0,000 0,068 0,458 0,439 0,545
concer V8 M1 - 3308 11,5 -18,70 -3,212 -3,074 -3,069
AIC . 4006 13193 21520 3898 3740 3735
BIC . 4532 13454 22046 4423 4266 4260
arand 0,717 0,679 0,630 0,515 0,632 0,640 0,671
ods AV Ll - 1,409 6,079 -3,080 -1276 -1,273 1,311
AIC . 630 -2493 1382 624 623 639
BIC . 827 -2393 1529 771 770 786
artand 0,371 0,915 0,023 0,203 0571 0,421 0,383
wine vl - 185 -17,32 -22,07 -1997 -19.91 -19,93
AIC . 6750 6351 8016 7268 7247 7256
BIC . 7005 6644 8271 7522 7502 7510

Table 2. The results of classical algorithms in the case of data from UCI repository.

In the second example we use real datasets with labels from UCI repository. In

125

the experiment we use BIC, AIC measures for verify which model fits data best.
On the other hand, we use adjusted rand index to check which model is able to
recover reference clustering. The results of our experiment one presented in Table 2.
Results of recovering clustering for UCEC are comparable with k-means and worse
than GMM.

4. Conclusions

In the paper we construct UCEC, a fast clustering algorithm which describes compo-
nents by using uniform distributions. In our algorithm we use a data structure like
k-d trees or BST trees which allows to implement effective from a numerical opti-
mization point of view, algorithm. Therefore, we obtain a flexible tool for analyzing
data with finite support. Moreover, due to its nature UCEC automatically removes
unnecessary clusters and therefore can be successfully applied in typical situations
where the correct number of groups is not known.

5. References

[1] Jain, A., Data clustering: 50 years beyond K-means. Pattern Recognition Letters,
2010, 31(8), pp. 651-666.

[2] Levin, M.S., Combinatorial clustering: Literature review, methods, examples.
Journal of Communications Technology and Electronics, 2015, 60(12), pp. 1403—
1428.

[3] McLachlan, G., Krishnan, T., The EM algorithm and extensions. vol. 382. John
Wiley & Sons, 2007.

[4] McLachlan, G., Peel, D., Finite mizture models. John Wiley & Sons, 2004.

[5] Tabor, J., Misztal, K., Detection of elliptical shapes via cross-entropy clustering.
In: Pattern Recognition and Image Analysis. vol. 7887., Jun 2013, ,, pp. 656—663.

[6] Elguebaly, T., Bouguila, N., Background subtraction using finite mixtures of
asymmetric gaussian distributions and shadow detection. Machine vision and
applications, 2014, 25(5), pp. 1145-1162.

[7] Spurek, P., General split gaussian cross—entropy clustering. Expert Systems with
Applications, 2017, 68, pp. 58—68.

126

8]

[9]

[10]

[16]

[17]

Lee, S.X., McLachlan, G.J., Finite miztures of canonical fundamental skew t-
distributions. Statistics and Computing, 2015, pp. 1-17.

Lin, T.I., Ho, H.J., Lee, C.R., Flexible mixture modelling using the multivariate
skew-t-normal distribution. Statistics and Computing, 2014, 24(4), pp. 531-546.

Vrbik, 1., McNicholas, P., Analytic calculations for the em algorithm for multi-
variate skew-t mizture models. Statistics & Probability Letters, 2012, 82(6), pp.
1169-1174.

Browne, R.P., McNicholas, P.D., A mixzture of generalized hyperbolic distribu-
tions. Canadian Journal of Statistics, 2015.

Smieja, M., Wiercioch, M., Constrained clustering with a complex cluster struc-
ture. Advances in Data Analysis and Classification, pp. 1-26.

Spurek, P., Tabor, J., Byrski, K., Active function cross-entropy clustering. Expert
Systems with Applications, 2017, 72, pp. 49-66.

Banfield, J.D., Raftery, A.E., Model-based gaussian and non-gaussian clustering.
Biometrics, 1993, pp. 803-821.

Jirsa, L., Pavelkovd, L., Estimation of uniform static regression model with
abruptly varying parameters. In: Informatics in Control, Automation and
Robotics (ICINCO), 2015 12th International Conference on. vol. 1., IEEE, 2015,
pp. 603-607.

Pavelkova, L., Karny, M., State and parameter estimation of state-space model
with entry-wise correlated uniform noise. International Journal of Adaptive Con-
trol and Signal Processing, 2014, 28(11), pp. 1189-1205.

Nagy, 1., Suzdaleva, E., Mlynarovd, T., Mixture-based clustering non-gaussian
data with fixed bounds. In: Proceedings of the IEEE International conference
Intelligent systems IS. vol. 16., 2016, pp. 4-6.

Tabor, J., Spurek, P., Cross-entropy clustering. Pattern Recognition, 2014, 47(9),
pp. 3046-3059.

Casella, G., Berger, R.L., Statistical inference. vol. 2. Duxbury Pacific Grove,
CA, 2002.

Hartigan, J.A., Clustering algorithms, 1975.

Smieja, M., Tabor, J., Spherical wards clustering and generalized voronoi dia-
grams. In: Data Science and Advanced Analytics (DSAA), 2015. 36678 2015.
IEEE International Conference on, IEEE, 2015, pp. 1-10.

Telgarsky, M., Vattani, A., Hartigan’s method: k-means clustering without
voronoi. In: AISTATS, 2010, pp. 820-827.

Bentley, J.L., Multidimensional binary search trees used for associative searching.

Communications of the ACM, 1975, 18(9), pp. 509-517.

Schedae Informaticae Vol. 25 (2016): 127-138

doi: 10.4467/2083847651.16.010.6191 t | | I 2017
theoretical foundations |
of machine learning, Krakow

Word Embeddings for Morphologically Complex Languages*

GRZEGORZ JURDZINSKI
Department of Theoretical Computer Science
Faculty of Mathematics and Computer Science of the Jagiellonian University
ul. prof. Stanistawa Lojasiewicza 6, 30-348 Krakow
e-mail: grzegorz.jurdzinski@student.uj.edu.pl

Abstract. Recent methods for learning word embeddings, like GloVe or Word2Vec,
succeeded in spatial representation of semantic and syntactic relations. We ex-
tend GloVe by introducing separate vectors for base form and grammatical form
of a word, using morphosyntactic dictionary for this. This allows vectors to cap-
ture properties of words better. We also present model results for word analogy
test and introduce a new test based on WordNet.

Keywords: machine learning, word embeddings, natural language processing,
morphology

1. Introduction

Word embedding methods assign vectors in continuous n-dimensional space to words
from a language. These can be used for various tasks, such as information retrieval
[1], document classification [2], question answering [3], named entity recognition [4]
and parsing [5].

Most word vector methods are supposed to cluster words that have similar mean-
ing and their performance was evaluated based on experiments testing distance or

Received: 11 December 2016 / Accepted: 30 December 2016

* First version of this work was prepared as Bachelor Thesis at Institute of Computer Science
of University of Wroctaw. Its preparation was supervised by Jan Chorowski Ph.D., Institute of
Computer Science, Faculty of Mathematics and Computer Science of the University of Wroctaw, ul.
Joliot-Curie 15, 50-383 Wroctaw (email: jan.chorowski@cs.uni.wroc.pl)

128

angle between pairs of words. [6] introduced a more complex evaluation scheme. It is
based on word analogies that examine finer structure of word vector space on various
dimensions of difference. For example, the analogy “king is to queen as man is to
woman” should be encoded in vectors by equation vector(“king”) - vector(”queen”)
= wvector(“man”) - vector(“woman”). Indeed many of mentioned word embedding
methods produce representations encoding such relations well.

Models like Word2Vec [7] and GloVe [8] receive worse scores on syntactic part of
this test. The idea of our solution is to produce separate vectors for the base form of a
word and the set of tags describing its grammatical form (called tagset in further part
of this work). For example for Polish word “jablek” (genitive case of word “apples”)
its base form is “jablko” (“apple”) and its tagset is “subst:pl:gen:n2” (describing that
it is a plural form of a noun in genitive case with neuter grammatical gender). Such
decomposition of a word can be obtained using morphosyntactic dictionaries (e.g.
Polimorfologik for Polish). Then, during learning, vector for each word is represented
as sum of vectors of its base form and tagset. One of benefits of such approach is
giving the model a possibility to gather more information about rare words. Models
mentioned above treat occurrences of the same word in different grammatical forms
as separate words. For example there is no direct connection between “ablkami” and
“jabtku”. Out model has a common base form vector for all forms of “jablko” so it is
able to make use out of each occurrence of word regardless its grammatical form.

1.1. Related work

Word embedding was analyzed and implemented in various works. We shortly describe
some important examples below.

Feedforward Neural Net Language Model (NNLM) [9] uses word vectors as its pa-
rameters. The network itself models the language — that means than when fed with NV
words (where N is a fixed, chosen number) it produces a probability distribution over
all words from the language. For each word it should be the probability of appearing
after the N given words. Part of the neural network is a shared matrix of word vectors.
NNLM consist of input, projection, hidden and output layers. In the input layer N
previous words are encoded using 1-of-V coding (where V is size of the vocabulary),
then it is projected to a projection layer P that has dimensionality N - D (where D
is the dimensionality of word vectors), using a shared projection matrix. That means
that each 1-of-V vector is replaced with a word vector from the shared matrix and
then all of them create one big N - D vector. Between the projection and hidden layers
there is a dense connection and results of the hidden layer are used by the output
layer to compute a probability distribution over all words in the vocabulary using the
softmax function.

Word2Vec [10, 7] implements two models — Continuous Bag-of-Words Model (CBOW)
and Continuous Skip-gram Model (Skip-gram). Both models were based on NNLM.
They consist of input, projection and output layers. CBOW, after projecting words to
their vectors, averages them to one vector (NNLM was joining them to create bigger
vector) and uses an output layer to predict the word. Also, instead of predicting next

129

word, after given N words, it predicts middle word given words within certain range.
Skip-gram model, instead of predicting a single word based on context, predicts the
context itself. Authors of Word2Vec made many improvements with respect to the
complexity of the model. They have replaced softmax with its efficient approximations
— they have tested Hierarchical Softmax and Negative Sampling [7].

Problem of representing morphology in word embeddings was already tackled be-
fore. One of the examples are morphoRNN [11] and [12]. Both of these works split
words into morphemes and learn separate vectors for theme. For example word “un-
fortunately” would be split into “un”, “fortunate” and “ly”. To get a vector for a word
[12] sum up vectors of its morphemes. They also learn a separate vector for each word
and add it to its morphemes vectors, so for example vector for word “greenhouse”
would be vector(“greenhouse”) + vector(“green”) + vector(“house”) (final vector for
the word “greenhouse” and the vector used to compute it are two different vectors).
[11] present more complex way of combining morpheme’s vectors. To produce a word
vector a small neural network is used. At each step one affix and word stem are com-
bined. A new vector is produced from stem vector (Zsien) and affix vector(xassix) as
follow: p = f(W[®sten; Tasrix] + bm). Vectors for stem and affix are combined into
bigger vector and multiplied by the matrix of parameters (W,,,) and bias vector (b,,)
is added. f is an element-wise activation function (tanh for example). So for example
a vector for a word (“unfortunately”) would be computed in two steps. First vector
for “unfortunate” would be computed by combining vectors for “un” and “fortu-
nate”. Then vectors for “unfortunate” and “ly” would be combined to give vector for
“unfortunately”.

The main difference between these two works and the approach we present is the
way of splitting the words — instead of looking at the morphemes the word consists
of we take its base form and the set of the tags describing its grammatical form.

GloVe was introduced by [8]. Since our work is based on it, we will describe it
precisely in next section.

2. GloVe model

GloVe model, introduced by [8], utilizes two approaches to the problem — matrix fac-
torization methods and shallow window-based methods. First uses a large matrix that
captures statistical information about a corpus, e.g. rows can correspond to terms,
columns to documents in the corpus and cells are numbers of occurrences of term in
document. Such approach is used by [13] in latent semantic analysis (LSA). Examples
of shallow window-based methods are NNLMs and Word2Vec. Their approach is to
learn word representation which aim is to predict word given a local context window
of a few, typically 5 — 15 words.

Before learning vectors a co-occurrence matrix X is created by counting word
co-occurrences in a corpus. For that the context window size is being chosen — let’s
denote it as ws. We will say that a word j occurs in context of a word 7 if it occurs
in the corpus within ws distance from i. X € NV*V (where V is size of vocabulary —

130

number of different words in corpus) is a word-word co-occurrence matrix, that means
Xi; is number of occurrences of word j in context of word i. We will call word j a
context word.

Word vectors are learned based on the matrix X. For each word there are two
separate vectors in GloVe — the word vector and the context vector. Let w; be the
word vector of word i and w; be the context vector of word i. Analogically there are
two biases for each word — b; and b;.

Authors of GloVe claim that word vectors should satisfy the following equation
([8] give full justification for this formula):

wli; + b; 4+ bj = log(Xi;) (1)

For learning vectors equation 1 is treated as least squares problem. This results in a
cost function defined as following:

14
J = Z f (Xij) (wZTu?k +b; + Bk — logXik)2 (2)

i,5=1

where f(X;;) is a weighting function. Main reason for introducing it is to prevent rare
co-occurrences from influencing the model too strongly. According to Pennington et
al. weighting function should satisfy the following properties:

1. f(0) =0.If f is viewed as a continuous function, it should vanish as x — 0 fast
enough that the lim, o f(x)log® z is finite.

2. f(x) should be non-decreasing so that rare co-occurrences are not overweighted.

3. f(z) should be relatively small for large values, so that frequent co-occurrences
are not overweighted.

Authors of GloVe were using the following weighting function:

f(.l?) _ {ix/zmax)a if x < i.Emax (3)
otherwise

where Zn.x and « are left as free parameters. They have discovered that xy,.x does

not influence the model strongly and were using x,.x = 100 for all their tests. They

have also found that a = 3/4 gives slight improvement over a = 1.

The cost function (2) is minimized using the AdaGrad algorithm [14] — variation
of regular Gradient Descent. At each step a pair of words 7 and j is being chosen
and the cost of approximating X;; is being computed. Every parameter (vectors and
biases) is then being updated using gradient. A full iteration of the algorithm goes
over all pairs of words. The program is being run for a fixed number of iterations.

Resulting vectors create many clusters — words with similar meaning or grammat-
ical form are grouped together. Unfortunately often syntactics of words is not rep-
resented by these clusters so words considering similar subject but with completely
different grammatical form are close.

131

3. Extentded GloVe model

The main idea of our extension of GloVe model is to replace word vectors with vectors
for base forms and tagsets — for each word its vector will be the sum of vectors of
its base and grammatical form. It requires finding the base form and the tagset for
each word in the vocabulary and changing the model itself. Such approach gives less
freedom to the model — regular GloVe could easily place word vectors in most suitable
place, here it is not always possible since base forms vectors and tagsets vectors are
shared by various words — but it also gives extra information that model can use.

3.1. Obtaining base forms and tagsets for words

For obtaining base forms and tagsets for words we have used the morphosyntactic
dictionary Polimorfologik [15]. For each word it defines its base form and a set of tags
describing its syntactic form. If its ambiguous, several tagsets, separated with plus
sign, are defined. An example line of Polimorfologik looks like this:
kot;kotami;subst:pl:inst:ml+subst:pl:inst:m2

The example word is “kotami” (“cats” in instrumental case). The first column is the
base form — kot (“cat”) here. The second column is the word itself — kotami. The
third column — subst:pl:inst:ml+subst:pl:inst:m2 — is the set of tags describing
grammatical form of the word. Two tags (subst:pl:inst:ml and subst:pl:inst:m2)
are separated by the + sign due to the ambiguouity of the grammatical form of the
word. Both contain parts describing that it is a noun (subst), in plural form (pl),
in instrumental case (inst). The difference between them is the part responsible for
grammatical gender of the word (m1 and m2). The word “kotami” in Polish can be
interpreted as as in two of three possible musculine grammatical genders — personal
and animate.

We have prepared scripts extracting base forms and tagsets for words from vocab-
ulary, putting them in separate files and creating a file that for each word contains line
with its base form and tagset. For words that were not found in the Polimorfologik
we have the word itself to be its base form and assigned an empty grammatical tag.
Therefore all unknown words are assigned to the same grammatical tagset. Please
note that this doesn’t preclude learning correct embeddings for words not found in
Polimorfologik — in fact, since the base form of such words is unique their embedding
is not shared with other words and the model is free to place them whenever is ap-
propriate in the embedding space so the results for these words should be similar to
the regular GloVe.

132

3.2. Learning separate vectors

Introducing separate vectors for base forms and tagsets required changes in model.
First denote J;; as single element of a sum from equation 2 for words 7 and j. Let
fdiff = f (Xi;) (wlFd; + b; 4+ b; — log X;j) and w; i, be k" element of vector w;. Then
we have

3JZ 8 ~ 7
ow; - Owukf(Xij)(wiij +; +bj +log X;)?

,) ~ y - 4
= 2 - {diff - Dwn r (; wiWj, + b + by — log Xij) @
=2 - fdiff - W,

where n is dimensionality of vectors.

For learning separate vectors for base forms and tagsets we replaced word vectors
with sums of vectors of its forms, resulting with following cost function:

|4
TE =3 F(Xig) (wi 4 0i) " (@5 + 55) + (BF +b7) + (B +bY) +log X;5)° (5)

i,j=1
where w; and v; are vectors of base form and tagset of word 7 (analogically for context

word and biases).

Let Ji(jz) be analogical to J;; for equation 5 and fdiff to the previous definition.
Than we have:

2J7 o

o = Fu o X (@i+)" (@ +8) + 6 +57) + (b5 +b5) +log X,5)°

. 6 - ~ ~ w U ~w ~’U
= 2 - fdiff - Dwi (;(wi,l + 03,0) (W5,0050) + (b5 + b7) 4 (b + b5) + log Xij)

. 8 n o
= 2. fdiff - 5 (Z(wi,l + Ui,l)(wj,lvj,l)> ©

Wik =

. 9 . _ . _
= 2 - fdiff - T(wi,kwj,k + Wi k0, + Vi Wik + Vi kVj k)
Wi,k
. 9 . _ P _
= 2 - {diff - 7(wi7kwj,k + wi7kvj7k) = 2 - {diff - (ka + Uch)
Ow;

(analogically for other vectors and biases).

We have set &max = 100 and o = 3/4 since these were the values that gave best
results for GloVe.

By separating vectors responsible for meaning and grammar of words the model
can easily group one type of vectors by semantics of words and second one by syntac-
tics.

133

4. Experiments

4.1. Corpora and training details

For Polish language we have trained my model on a 2016 Wikipedia dump with over
350 billion words. We lowercased the corpus and removed punctuation marks with
simple script, built a vocabulary of words appearing in the corpus at least 20 times
(resulting with over 400 million words vocabulary). Then we built the co-occurrence
matrix X using a window size 10.

For all experiments we set Tmax = 100 and « = 3/4. The model was trained
using asynchronous AdaGrad, stochastically sampling non-zero elements from X (co-
occurrences are randomly shuffled after counting and before starting learning), with
initial learning rate set to 0.05. We have trained our model for vectors of size 50, 100,
200 and 300.

4.2. 'Word analogies test

It has been observed that words with the same grammatical form or similar meaning
tend to spread among subspace of original vector space. This suggests that some part
of vectors might be responsible for certain features of words. Following this observation
[6] has proposed new technique to measure quality of word vector representations. It
intends not only to check whether similar words are close to each other but also to
investigate multiple degrees of similarity.

Similarities of word vector representations apply not only to syntactic properties
of words but also to semantic. [10] describe word offset technique that uses simple
algebraic operations applied to vectors . For example, as we have mentioned in the in-
troduction, vector(“king”) - vector(“man”) + vector(“woman”) results with a vector
that is closest to the vector representation of word queen.

To examine these regularities Mikolov et al. has introduced the word analogy test.
It consists both of semantic and syntactic tests divided into categories. Each file
consists of one type of regularity. In each line there are two pairs of words

For our needs we have translated files with these tests to Polish and extended
with tests for regularities that are absent in English. Examples of each categories are
presented in Table 1. We have avoided multi-word entities (like New York). Overall
there are 8869 semantic and 10000 syntactic questions.

We evaluate vectors accuracy for all question types and for each question type
separately (semantic, syntactic). Question is assumed to be answered correctly if and
only if the nearest word to the vector computed suing method described above is
exactly the word from question.

GloVe model vectors score better results in the semantic part of the test. Learning
separate vectors for base and grammatical forms of words gives the model extra

134

Type of relationship Word Pair 1 Word Pair 2
Common capital city Ateny Grecja Oslo Norwegia
All capital cities Astana Kazachstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago Ilinois Stockton Kalifornia
Man-Woman brat siostra wnuk wnuczka
Adjective to adverb niezwykly | niezwykle pozorny pozornie
Opposite staly niestaly $wiadomy | nie$wiadomy
Comparative zty gorszy miekki miekszy
Superlative duzy najwiekszy bliski najblizszy
Nationality adjective albania albanski japonia japonski
Past tense tanczy tanczyt zmniejsza zmniejszal
Plural nouns ptak ptaki butelka butelki
Grammatical gender jadt jadla znalazt znalazta
Nominative-genitive kalafior kalafiora pierwiastek | pierwiastka

Table 1. Examples of word analogies divided into types

information about morphology. It results with much better scores for syntactic part
of the word analogy test but it also lowers scores for semantic part.

We have experimented with two ways of computing vectors for each word — adding
vectors of its base form and tagset (BF + TS) and adding also vectors of the word
itself (the one computed for the regular GloVe; BF + TS + word). Similar technique
to the second one was used in [12]. Results are presented in Table 2.

Model Dim. | Sem. [%] | Syn. [%] | Tot. [%]
GloVe 50 25.57 18.97 22.36
BF+TS 50 13.92 37.17 25.23
BF+TS+word 50 17.46 24.61 20.94
GloVe 100 46.47 25.36 36.20
BF+TS 100 22.10 41.46 31.59
BF+TS+word | 100 31.57 37.77 34.59
GloVe 200 56.96 28.43 43.09
BF+TS 200 21.69 44.21 32.64
BF+TS+word | 200 42.83 46.24 44.49
GloVe 300 57.64 28.64 43.54
BF+TS 300 20.15 43.46 31.49
BF+TS+word | 300 40.97 48.01 44.39

Table 2. Accuracy for word analogy test

These results show that when splitting a word into its base and grammatical form
the model tends to loose information about semantics of the word for its syntactic.
Possible reason for that is lower freedom of placing vectors for the extended model
than in the regular one. Both base forms vectors and tagsets vectors are shared by
many various words what makes it much harder for the model to place word vector in
most convenient location. Grammatical properties represented by tagsets are always

135

BF weight [TS weight | word weight [Sem. [%] | Syn. [%] | Tot. [%]
Regular GloVe 57.64 28.64 43.54

0.6 0.4 0 14.53 59.27 36.29
0.7 0.3 0 11.55 55.31 32.83
0.8 0.2 0 9.42 51.18 29.73
0.4 0.3 0.3 39.22 57.51 48.11
0.3 0.3 0.4 51.87 50.53 51.22
0.4 0.2 0.4 46.68 49.35 47.98
0.4 0.4 0.2 30.60 61.57 45.66

Table 3. Weighted vector sums accuracy for dimensionality 300

strictly defined and base forms can be ambiguous what might make tagsets vectors
y,dominate” base forms vectors. For this reason we have tested assigning different
weights to base form, tagset and word vectors when summing these vectors. Results
for vectors of dimensionality 300 are presented in Table 3. For comparison we have
also included results for the regular GloVe in the first row.

Our model outperforms regular GloVe in the syntactic part of the test for any
weights. Even though regular GloVe is still better for the semantic part of the test,
our model receives almost equal score for some weights. What is also worth noticing
is the fact that for weights 0.3, 0.3, 0.4 our model get best total result out of all
combinations we have tested and also very good scores for both semantic and syntactic
parts of the test. That gives us a model that balances between semantic and syntactic
performance well.

4.3. Wordnet

For this test we have used the polish wordnet - Slowosieé¢ [16]. Wordnet is a semantic
dictionary reflecting lexical system of polish language. Entries of wordnet are con-
nected by relations creating net. For example car is a type of wvehicle, consists of
wheels, engine and others and its synonyms include automobile and truck. Stowosieé
has been created together by computer scientists and linguists.

For our tests we have used the shortest path distance in wordnet graph as word
similarity measure. We have defined test set, consisting of 72 popular words and 64
rare words. For each of them we have found 5-20 closest word vectors. Then we have
computed the average distance of their base forms (wordnet contains only base forms
of words) in wordnet graph from starting word.

Like in the word analogy test, we have tested regular GloVe vectors, sums of base
and grammatical forms and sums of all three. Since the wordnet test examines only
semantic features of word vectors we have also tested it for base form vectors (for each
word we have assigned vector of its base form as its vector). Results are presented in
Table 4. We have tested it for 10 closest words.

As it was expected, best results were scored for base form vectors — this test
examines only semantics of words so tagset vectors only “disturb”. The model we

136

Model Dim. | Popular words | Rare words | Total
GloVe 100 2.612 1.824 2.272
BF+TS 100 2.904 2.476 2.674
BF+TS+word | 100 2.907 2.215 2.563
BF 100 0.593 0.605 0.599
GloVe 200 2.559 1.471 2.088
BF+TS 200 2.730 2.390 2.550
BF+TS+word | 200 2.696 2.453 2.583
BF 200 0.434 0.546 0.491
GloVe 300 2.541 1.686 2.175
BF+TS 300 2.701 2.273 2.473
BF+TS+word | 300 2.797 2.416 2.617
BF 300 0.396 0.595 0.498

Table 4. Accuracy for wordnet test for 10 closest words

have implemented has the advantage of gaining information about the meaning of
word regardless of its grammatical form so no matter in what case the word occurs,
it contributes to learning of the meaning of all of its forms.

5. Conclusion

In our work we have presented, implemented and tested methods to enhance word
vectors performance. Feeding model with additional information about base and gram-
matical forms of words allows it to extract semantic and syntactic information better.
It also allows the model to use the corpus more efficiently — occurrences of rare words in
different forms are connected and we are able to gather more information about them.
We have also translated to Polish set of questions for words analogy test prepared by
[10] for testing my model and we have introduced new test basing on Stowosieé [16].

5.1. Future work

Several improvements can still be tested. One of them can be a syntactic tagging
of corpus for word disambiguation. In our work for each word we have chosen its
base and grammatical form not regarding its context. If its grammatical form was
ambiguous a tagset was created.

Testing another models, like Skip-gram and CBOW [10], might also help to investi-
gate capabilities of splitting word vectors. Although models implemented in Word2Vec
and GloVe are somehow similar, the first ones are more complex what might give the

137

opportunity to capture language structure better.

Another methods of constructing word vectors from vectors of its base forms and
tagsets could be tested too. [11] construct word vectors with small neural network,
what gives the model more flexibility and makes the process of combining vectors
learnable. Another, simpler method could be concatenating two vectors into one bigger
(so if vectors of base forms and tagsets would be from R™ the resulting vector would
be from R?").

Word embeddings are useful as a way of preprocessing data. When used in bigger
model it is hard to tell how the vectors affect the model exactly and which of its parts
should be improved. Due to this fact the performance of our vectors on downstream
tasks could be also tested and discussed in future. [17] present more methods for
evaluating word embeddings.

Acknowledgements

The authors would like to acknowledge the support of the National Science Center
(Poland) grant Sonata 8 2014/15/D/ST6/04402 and thank the Wroclaw Center for
Networking and Supercomputing for donating computer time.

6. References

[1] Manning, C.D., Raghavan, P., Schiitze, H., Introduction to Information Retrieval.
Cambridge University Press, 2008.

[2] Sebastiani, F., Machine learning in automated text categorization. ACM com-
puting surveys (CSUR), 2002, 34(1), pp. 1-47.

[3] Tellex, S., Katz, B., Lin, J., Fernandes, A., Marton, G., Quantitative evaluation
of passage retrieval algorithms for question answering. In: Proceedings of the
26th annual international ACM SIGIR conference on Research and development
in informaion retrieval, 2003, pp. 41-47.

[4] Turian, J., Ratinov, L., Bengio, Y., Word representations: a simple and general
method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, Association for Computational
Linguistics, 2010, pp. 384-394.

[5] Socher, R., Bauer, J., Manning, C.D., Ng, A.Y., Parsing with compositional
vector grammars. In: ACL (1), 2013, pp. 455—465.

138

[6] Mikolov, T., Yih, W.t., Zweig, G., Linguistic regularities in continuous space
word representations. In: HLT-NAACL. vol. 13., 2013, pp. 746-751.

[7] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., Distributed rep-
resentations of words and phrases and their compositionality. In: Advances in
Neural Information Processing Systems 26, 2013, pp. 3111-3119.

[8] Pennington, J., Socher, R., Manning, C.D., Glove: Global vectors for word rep-
resentation. In: EMNLP. vol. 14., 2014, pp. 1532-43.

[9] Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C., A neural probabilistic language
model. Journal of Machine Learning Research, 2003, 3(Feb), pp. 1137-1155.

[10] Mikolov, T., Chen, K., Corrado, G., Dean, J., Efficient estimation of word rep-
resentations in vector space. CoRR, 2013, abs/1301.3781.

[11] Luong, T., Socher, R., Manning, C.D., Better word representations with recursive
neural networks for morphology. In: Proceedings of the Seventeenth Conference
on Computational Natural Language Learning, CoNLL 2013, Sofia, Bulgaria,
August 8-9, 2013, 2013, pp. 104-113.

[12] Botha, J.A., Blunsom, P., Compositional morphology for word representations
and language modelling. In: ICML, 2014, pp. 1899-1907.

[13] Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.,
Indexing by latent semantic analysis. Journal of the American Society for Infor-
mation Science, 1990, 41(6), pp. 391.

[14] Duchi, J., Hazan, E., Singer, Y., Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of Machine Learning Research, 2011,
12(Jul), pp. 2121-2159.

[15] Mitkowski, M., Polimorfologik. https://github.com/morfologik/polimorfologik
2016.

[16] Maziarz, M., Piasecki, M., Szpakowicz, S., Approaching plWordNet 2.0. In:
Proceedings of the 6th Global Wordnet Conference, January 2012, ..

[17] Schnabel, T., Labutov, I., Mimno, D.M., Joachims, T., Evaluation methods for
unsupervised word embeddings. In: Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, 2015, pp. 298-307.

Schedae Informaticae Vol. 25 (2016): 139-151

doi: 10.4467/20838476S1.16.011.6192 t | | | 2017
theoretical foundations
of machine learning, Krakow

A Translation Evaluation Function based on Neural Network

AMEUR DouiB, DAvID LANGLOIS, KAMEL SMAILI
UNIVERSITE DE LORRAINE, LORIA, CAMPUS SCIENTIFIQUE,
BP 239, 54506 VANDOEUVRE-LES-NANCY, FRANCE
E-MAIL: ameur.douib@inria.fr, david.langlois@loria.fr, kamel.smaili@loria.fr

Abstract. In this paper, we study the feasibility of using a neural network to
learn a fitness function for a machine translation system based on a genetic
algorithm termed GAMaT. The neural network is learned on features extracted
from pairs of source sentences and their translations. The fitness function is
trained in order to estimate the BLEU of a translation as precisely as possible.
The estimator has been trained on a corpus of more than 1.3 million data. The
performance is very promising: the difference between the real BLEU and the
one given by the estimator is equal to 0.12 in terms of Mean Absolute Error.

Keywords: Statistical Machine Translation, Genetic algorithm, Quality esti-
mation, Neural network

1. Introduction

Nowadays, a lot of Statistical Machine Translation (SMT) systems use a Beam-search
algorithm [1] in order to retrieve the best possible translation by taking into account
different scores provided by several models: language, translation, distortion, etc.
Starting with an empty set, the solution building process consists in producing incre-
mentally a set of complete solutions from partial ones provided by a translation table
(T'T). Because the translation is built incrementally, it is then difficult to challenge
a previous decision of translation, which can eliminate a partial hypothesis, even if it

Received: 11 December 2016 / Accepted: 30 December 2016

140

could propose a good final solution.

An alternative to this algorithm is to start with a complete translation hypothesis
and try to refine it in order to retrieve the best solution. With complete translation
hypotheses, it is possible to revisit each part of the research space and modify it, if
necessary.

GAMaT [2] is a new decoder for SMT based on a genetic algorithm. It has the
advantage to refine several complete solutions in an iterative process and produce ac-
ceptable solutions. In fact, a possible solution is encoded as a chromosome, where the
chromosome encloses several information (the source sentence segmented into phrases,
a translation hypothesis also segmented into phrases, and alignment between source
and target segments). Then, from a population of chromosomes, we estimate their
fitness (score) in order to keep them, or not, for next generations. To do so, the
fitness is a combination of several scores measuring how the different segments of a
chromosome are coherent with each others. Nine scores corresponding to nine fea-
tures are combined to score translations [2]. A weight proportional to the impact of
the feature on the evaluation function is assigned to each feature. This combination
has been held by a log-linear approach. In GAMaT, the weights corresponding to the
nine scores are provided by Moses [1]. According to the BLEU [3] metric results, the
translation performance is good, but not better than Moses.

To get away from Moses and to propose a relevant solution for GAMaT, we propose
to learn the function of the chromosome evaluation by using a neural network (NN)
which predicts a BLEU value of the translation represented in a chromosome. In
other words, we would like the fitness function to be correlated to BLEU. The NN is
learned on the nine features mentioned before. We opted for BLEU metric because
it is commonly used in the MT community to evaluate translations. This kind of
learning algorithm is used in the Quality Estimation (QE) community [4], in order to
estimate the translation quality without access to the reference translation.

The article is structured as follows. We present the related works in Section 2. In
Section 3 we describe the chromosome features. In Section 4 we present the NN
used to learn the fitness function. Then, in Section 5 we describe how we generate
the dataset for the NN. We give the results of several configurations in Section 6.
Finally, we conclude and give some analyses and perspectives.

2. Related works

In this paper, we propose a new translation evaluation function for phrase-based SMT
decoders, and which is applied for our genetic-based decoder GAMaT [2]. This func-
tion is learned, using a neural network, on nine chromosome features and correlated
with the BLEU value of the translation enclosed in the chromosome.

Therefore, our work can be classed at the intersection of two research disciplines;
The former is the optimization of decoder parameters for machine translation [5, 6].
Where, for the majority of decoders, the objective function combines log-linearly a set
of translation features to evaluate the translation hypotheses. Optimising the weights

141

of this function allows a better translation accuracy. In the machine translation com-
munity to optimise these weights, the proposed algorithms are largely based on a grid
search algorithm [6]. Where the goal is to find the best set of weights which minimise
a loss function adapted for the translation process [5].

The latest domain is the Quality Estimation (QE). The main goal in this area is to
estimate the translation quality without access to the reference translation [4, 7]. To
this end, in QE community, machine learning algorithms are trained on features ex-
tracted from pairs of source sentences and their translations, and they are correlated
with an evaluation metric, which can be a metric with binary values (good/bad), or
a metric with continuous values (BLEU, TER, ...etc.). This can be done by different
machine learning algorithms such as SVM regression [8] or a Recurrent Neural Net-
work [9].

In this work, we use a neural network such as in QE community (see Section 4.), to
combine optimally the features used in the log-linear approach (see Section 3.). The
learned function estimates the quality of the translation by predicting its BLEU value,
without having access to the reference translation, which is the case at decoding time.

3. The features of the chromosomes

In order to evaluate the relevance of a chromosome, we need to evaluate it by combin-
ing its different features, such as what was done in [2]. The features are log-linearly
combined as follows:

Score(c) = Z)\i x log(hi(e, f)) (1)

Where f is the source sentence and e is the translation represented in the chromosome
c. A; is the weight of h; determined by Moses and h; is the score related to the i*"
feature. The value of each weight defines the influence of the corresponding feature in
the final score. Nine features related to the construction of a chromosome have been
used and are described in the following.

e Fi: alanguage model feature, which estimates how the translation e is linguisti-
cally correct in the target language. In practice, F} is estimated by the likelihood
P(e) of a translation yielded by the classical n-gram. In our experiments, n is
set to 3.

e Fy: the second feature concerns the translation probability. Given a chromo-
some ¢, Fy is based on the alignment presented in c. This alignment links each
source phrase to a target phrase. Then, F; is the product of translation scores
(from the source language towards the target one, given by the translation ta-
ble) between linked source and target phrases. This feature is called the direct
translation probability.

e F3: this feature concerns the inverse translation probability, which is equiva-
lent to the previous one, except that the translation scores are from the target

142

language towards the source one.

e F,: this feature estimates the quality of a pair of segments at word level [10].
It is defined as the product of lexical probabilities inside one segment and over
all the segments of the source sentence. This feature is called a direct lexical
probability.

e F5: symmetrically to Fy, an inverse lexical probability is estimated.

e F%: this one concerns the length of the target sentence in the chromosome to
produce. In fact, the translation should not be too much longer than the source
sentence. This feature is set with the difference between the length of the source
and the translation in terms of words.

e F;: to reinforce the previous feature, a length model is trained [2] that assigns
a probability to a pair of sentences depending on their lengths. In other words,
this feature is estimated as the probability that a source sentence with a length
ls, will produce a translation of length ;.

e Fg: longer sequences are linguistically more informative than smaller ones.
Therefore, a chromosome with a few number of phrases should give a better
translation. This feature is called the phrase penalty and is estimated as an
exponential function of the number of phrases: e*, where k is the number of
phrases in the chromosome.

e Fy: it is the cost of permutations in the translation at the phrase level, when
the target phrases are picked out of order [1].

To estimate some of the previous features, we need a translation table, which contains
pairs of source and translation phrases with their associated probabilities.

4. A machine learning algorithm for prediction

As presented in the introduction, the goal of this work is to propose a new chro-
mosome fitness function which combines optimally the features previously presented,
and which must be correlated with BLEU. To do so, we decided to train a supervised
neural network which takes as input the nine features of a chromosome, and as label
in output the BLEU value of the corresponding translation (Figure 1). The learned
fitness function is supposed to predict the BLEU of the translation of a chromosome.

143

Hidden

Output
layer

layer

BLEU

Figure 1. The neural network architecture

We experimented different configurations of the neural network by varying the
number of layers and the number of neurons. We used the Sigmoid function for the
neuronal activation. The experiments have been conducted by using Keras, a Deep
Learning library [11].

5. The dataset for Neural Network

To learn the neural network, a training corpus is necessary. In the following, it will
be composed by an important number of pairs < v.,a >. Where v, is a vector of 9
features which characterize a chromosome ¢ and « represents the BLEU value of the
translation hypothesis represented in the chromosome c. To this end, we used the
French-English parallel corpus of the 9t" task workshop on SMT [12]. We used this
corpus to produce the translation table TT which is necessary to build the chromo-
somes and also to calculate some features of chromosomes.

The corpus contains pairs of French sentences and their English reference translations.
We split it into two sets: the former, containing 1,323,382 pairs, is used to build the
TT handled by GIZA++ [13] and the language model; while the latter set (Cnn),
containing 165,422 pairs, is used to produce chromosomes.

For each source sentence in Cyny we built a set of chromosomes, e.g. a set of hypothe-
ses with the segmentation of source and target sentences, and the alignment between
source and target segments. We have to produce chromosomes representing perfect,
good and bad translations in order to diversify the dataset because the fitness must
predict correctly the translation quality of chromosomes, whatever this quality is. To
produce chromosomes, we used several functions of GAMaT [2] which take a source
sentence and produce one or more chromosomes.

The methods used to build chromosomes are presented in the following:

e From a source sentence, the builder of chromosomes proposes a segmentation
based on the longest phrase within it. This longest phrase can be found any-
where in the source sentence. This phrase is picked up from the TT. The seg-

144

mentation process is iteratively repeated until the whole sentence is segmented.
Then, each source phrase is translated in the target language by choosing the
most likely translation from T7T. Source sentence and hypothesis have same
phrase ordering. This produces one chromosome.

e The process is the same as the previous method, but the source sentence is
segmented from left to right. This produces one chromosome.

e The process is the same as the previous method, but the source sentence is
segmented from right to left. This produces one chromosome.

e Here, the source sentence is randomly segmented, where all the produced seg-
ments must exist in the TT. This random segmentation is done several times,
in order to increase the number of chromosomes. This allows to increase the
size of the training corpus.

e In this one, the builder performs similarly such as in the previous point, except
that instead of selecting the best translation for a source phrase, it chooses
randomly from TT one from the possible translations of this phrase.

e The producer proposes chromosomes such as in the previous point, except that
the alignment between a source phrase and a target segmentation is not mono-
tone: target phrases are mixed. This allows to build several bad chromosomes.

e For each source sentence, the producer of chromosomes keeps the best solu-
tion proposed by GAMaT. This allows to produce for each source sentence one
chromosome with a good quality translation.

e Similarly to the previous one, the producer of chromosomes keeps the best
solution proposed by Moses for the source sentence.

Using these methods, we produced 1,5 million of chromosomes, from 165,422
source sentences. For each of them, we produced a set v, of 9 features, and we
calculated «, which is the BLEU value in this work. The BLEU estimates the simi-
larity between the hypothesis and the reference translation. This produced a training
corpus for the NN composed of a set of pairs < v., a >.

6. Experiments and results

In this section, we describe our experiments. We describe the different training and
test corpus we used, and how we measured the performance of the neural network.

6.1. Evaluation metric

To evaluate the precision of the prediction function, the Mean Average Error (MAE)
criterion [14] is calculated on the test set. The error is the difference between the real

145

BLEU and the predicted value:

1 n
MAFEpLEy = ﬁz |BLEU,(¢;) — BLEU,(c;)| (2)
i=1
Where BLEU,.(¢;) is the real BLEU value of the translation in the chromosome ¢;,

and BLEU,(¢;) is the predicted BLEU value for the same translation. n represents
the size of the test set.

6.2. Training and test corpus

In order to build the training and test corpus, we followed the process we described in
Section 5. We segmented this corpus into a training and a test part respectively 90%
and 10%. We show in Figure 2 the distribution of this corpus according to the BLEU
value. This figure shows the proportion of chromosomes for five BLEU intervals:
[0,0.25] (very bad translation according to reference), [0.25,0.5[, [0.5,0.75[, [0.75,1]
and BLEU=1 (perfect translation). The bar Unbalanced training set corresponds to
the proportions of the different qualities of translations presented above. The bar
referenced as Test set corresponds to the proportions of the test corpus for which we
keep the same distribution as in the training corpus. This corpus is not balanced, this
could be a drawback, because the NIV should estimate the translation quality with
the same precision, whatever the correctness of a chromosome is. That is why, we
trained also the NN with a balanced training corpus (the bar Balanced training set).
In GAMaT, at the translation time, the distribution presented above is not necessarily
respected because the set of chromosomes (population) evolves at each iteration.
Therefore, we achieve also experiments with another test corpus (bar GAMaT test
set in Figure 2) built from a translation corpus used in [2]. This test corpus is
representative of chromosomes obtained at end of the real translation process. This
test corpus contains 50,000 chromosomes built from 1,000 source sentences. It contains
very few perfect translations, and relatively more very bad translations compared to
Test set.

100 | —| |:| BLEUE[0,0.25[
80 |- | D BLEUE[0.25,0.5[
e 60 [~ — D BLEUE[0.5,0.75[
40 |- — . BLEUE[0.75,1]
20 — . BLEU=1
ol |
| | |
- t
ced 4 tro? tes
Un‘t)ol_@TL et alanc® Test set GAM&T
. oang ° B set
g™ ing $ set

Figure 2. Distribution of data in the training sets and test sets.

In the following, we present the performance of the estimator on Test set and
GAMaT test set, trained with Unbalanced training set and Balanced training set.

146

6.3. Impact of the neural network architecture

In this section, we study the performance of the NN according to the number of
layers (1 to 7) and neurons (8, 16, 32 and 64) in each layer. Figure 3 shows the MAE
performance on Test set according to the number of layers, and to the number of neu-
rons. In the left curve, for each number of layers the plot is the average performance
according to the number of neurons. In the right curve, for each number of neurons
the plot is the average performance according to the number of layers. The figure
shows that the best results are achieved for 4 layers and 32 neurons by layer.

0.128 T T T T T 0.128 T T

@ 0.126 0.125[: —
3
]
0.124 0.124 |- —
! !
8 16 32 64
Number of layers Number of neurons

Figure 3. The influence of the number of layers and neurons in the MAE score.

As these values are only averages, we give in Figure 4 the performance for each
couple (number of layers, number of neurons by layer). This figure shows that the
performance are better when the number of neurons grows with the number of layers.
In the following experiments, we keep the best average configuration: 4 layers, and
32 neurons by layer.

| | | L
0.129 - ’DDSNDDIGNDD32NII64N‘ N
@ 0126 |-
; 0.124 |- N
0.12 [| | | ‘ : I ‘ ! |
1 2 3 4 5 6 7

Number of layers

Figure 4. Details of the influence of the number of layers and neurons in the MAE score.

6.4. Impact of the size and quality of the training corpus

In machine learning, the size of the training data is crucial, and the test data should
not be very different from the training data. To respect this constraint, we increased
the training set, from 225,000 to 2,250,000 with and without paying attention to the
proportion of the quality of the set of chromosomes (Figures 5 and 6). Figure 5-(a)

147

shows the performance on Test set and GAMaT test set trained with several sizes of
the Unbalanced training set.

—F— BLEU=[0,0.25]
—f}— BLEU=[0.25,0.5[
—F— BLEU=[0.5,0.75[

—k— Test set —f}— BLEU=[0.75,1]
——k— GAMaT set e BLEU=1
018 7171771 T T
0.13 - -
0.125
@ 012 0
; 0.115 %ﬂ
0.11
0.105
o b—r v [O S S N
5 S04 S S G g RSOGO G
I I S AP AT 9 QFRPTQT AT AFIATTIA N QR g,
#data (millions) #data (millions)
(a) (b)

Figure 5. The influence of the number of data in Unbalanced training set.

The performance on the corpus Test set is not affected by the size of the training
corpus according to the results of Figure 5. On the contrary, the curve for GAMaT
test set is more chaotic but the performance of the estimator tends to be better, as
the size of the training increases. Figure 5-(b) shows that the estimator produces
bad results for chromosomes for which the BLEU is greater than 0.75 and estimates
correctly the others. This is probably due to the fact that bad chromosomes are more
numerous than the good ones in Test set.

In Figure 6-(a), we did the same experiments, but with Balanced training set. The
performance with good chromosomes is henceforth better, since the training corpus
is more balanced.

—B— BLEU=[0,0.25[
—f+— BLEU=[0.25,0.5[
—B— BLEU=[0.5,0.75[

— Test set —f+— BLEU=[0.75,1[
—— GAMaT test set —— BLEU=1
03 =TT 71 T T
0.13 | 1
0.125 |
m 012} I
; 0.115 - N <§ﬂ
0.11 |- . :
0.105 |~ - 0.05 |- .
0.1 Y R R S B [I I R N R N
S @ O BT T G o D (T P T S (T S e
Qﬂ‘ Qfo Q'(\ \‘9 \‘9/ \'6 \.ﬂ ‘IQ qf» rb?) Qﬂ‘ Qfo Q'(\ \‘.Q \‘9/ \?’ \.ﬂ ‘LQ rbq' (Lb
#data (millions) #data (millions)

(a) (b)

Figure 6. The influence of the number of data in Balanced training set.

148

As in the previous figure, we give more details about MAE performance for test
subsets according to translation quality in Figure 6-(b). This figure shows that balanc-
ing the training corpus allows to improve the prediction performance for good quality
translations, but this is not sufficient to improve the overall performance because
these good translations are not numerous in the Test set.

6.5. Results and Discussion

The results in the different campaigns of Quality Estimation are very close to each
other [4]. Our results obey to this rule. Two main results emerge from this study.
For a training corpus not selected smartly, in other words for the Unbalanced training
set, the estimator needs 2.25 million of chromosomes to reach the best result 0.1061
(Table 1) on GAMaT test set. While for the Test set, we need only 1.25 million of
chromosomes for a MAE of 0.1212. In spite of these low scores (lower is better for
MAE), the estimator evaluates badly the best hypotheses of translation, for which the
BLEU is greater than 0.75 (see Figure 5-(b)). When we use Balanced training set, we
need only 0.5 million of chromosomes to reach the best performance for GAMaT test
set with a MAE of 0.1138. The best result for the Test set is obtained for 1.5 million
of chromosomes which leads to a MAE of 0.1257. With this Balanced training set,
the best hypotheses are better evaluated than with the first training set (see Figure
6-(b)), but we lose in the quality estimation of the bad hypotheses, which are more
numerous in the real translation process. This explains the fact that the performance
of Unbalanced training set is better than those of Balanced training set.

Test set

Training set | # of data Test GAMaT

1.25m 0.1212 0.1212
Unbalanced

2.25m 0.1242 0.1061

1.50m 0.1257 0.1243
Balanced

0.50m 0.1276 0.1138

Table 1. Best MAE scores for Unbalanced training set and Balanced training set.

To study the behavior of the proposed evaluation function in a real translation pro-
cess, we used it as a chromosome evaluation function in our SMT decoder (GAMaT)
in order to translate a set of 1.000 source sentences. In Table 2 we present some trans-
lation results according to the BLEU metric [3]. For each training size, the fitness
function we used is the one which led to the lowest MAE score. The best translation
performance are obtained when we trained the neural network on 1.250.000 data with
5 hidden layers and 64 neurons in each layer. This configuration allowed us to achieve
21.05 in BLEU.

149

Best configuration used
Size of training set (Millions) | # of hidden layers | # of neurones | BLEU
0.25 5 32 17.91
0.50 7 20 18.34
0.75 6 64 19.80
1.00 5 64 20.15
1.25 5 64 21.05
1.50 6 64 18.56
1.75 3 64 16.27
2.00 4 64 17.94
2.25 5 64 17.98

Table 2. Translation performance according to BLEU using the proposed function.

Through these results, we notice the fact that the size of the training corpus
leading to the best performance in terms of BLEU is the same than in terms of MAE
(see Table 1). The best configuration uses 5 hidden layers and 64 neurones, and these
number of layers and neurones lead also to the best configuration in terms of MAE
(see Figure 4).

Therefore, improving the quality of the learned function ensures to improve the final
translation quality.

7. Conclusion and perspectives

In this paper, we investigated the use of a new function to evaluate chromosomes in
GAMaT. The function is an estimator of BLEU for a chromosome. This estimator
has been trained by a neural network which is learned on nine features extracted from
a set of chromosomes built by GAMaT.

The experiments show that the amount of the training data, and their distribution
in terms of translation quality, impact the precision of the function. The prediction
function achieved convincing results. In fact, the MAE calculated on a test set of
100,000 chromosomes is around 0.12. Also, the use of this function in GAMaT such
as a fitness function shows that improving the fitness in terms of MAE improves the
translation accuracy in real translation conditions.

The presented method uses BLEU for evaluating a translation, but could be extended
to other measures which might be combined in order to get a more robust fitness
function. To improve this prediction function, sampling techniques should be used to
select more representative data for the training.

150

References

1]

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., et al., Moses: Open source toolkit
for statistical machine translation. In: Proceedings of the 45th annual meeting
of the ACL on interactive poster and demonstration sessions, Association for
Computational Linguistics, 2007, pp. 177-180.

Douib, A., Langlois, D., Smaili, K., Genetic-based decoder for statistical machine
translation. December 2016, ,, Nous n’avons pas encore la date officielle de
publication.

Papineni, K., Roukos, S., Ward, T., Zhu, W.J., BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th annual meeting
on association for computational linguistics, Association for Computational Lin-
guistics, 2002, pp. 311-318.

Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Hokamp, C., Huck, M.,
Logacheva, V., Pecina, P., eds. Proceedings of the Tenth Workshop on Statisti-
cal Machine Translation. Association for Computational Linguistics, September
2015, ,.

Neubig, G., Watanabe, T., Optimization for statistical machine translation: A
survey. Computational Linguistics, 2016.

Och, F.J., Minimum error rate training in statistical machine translation.
In: Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics- Volume 1, Association for Computational Linguistics, 2003, pp. 160—
167.

B., O., et al., eds. Proceedings of the First Conference on Machine Translation.
Association for Computational Linguistics, August 2016, ,.

Langlois, D., Loria system for the wmt15 quality estimation shared task. In:
Proceedings of the Tenth Workshop on Statistical Machine Translation, Lisbon,
Portugal, September 2015, ,, pp. 323-329.

Kim, H., Lee, J.H., A recurrent neural networks approach for estimating the
quality of machine translation output. In: Proceedings of NAACL-HLT, 2016,
pp- 494-498.

Koehn, P., Och, F.J.; Marcu, D., Statistical phrase-based translation. In: Pro-
ceedings of the 2003 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics on Human Language Technology-Volume 1,
Association for Computational Linguistics, 2003, pp. 48-54.

Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau, O.,
Desjardins, G., Warde-Farley, D., Goodfellow, 1., Bergeron, A., et al., Theano:
Deep learning on gpus with python. In: NIPS 2011, BigLearning Workshop,
Granada, Spain, Citeseer, 2011.

151

[12] Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Leveling, J., Monz,
C., Pecina, P., Post, M., Saint-Amand, H., et al., Findings of the 2014 work-
shop on statistical machine translation. In: Proceedings of the Ninth Workshop
on Statistical Machine Translation, Association for Computational Linguistics
Baltimore, MD, USA, 2014, pp. 12-58.

[13] Och, F.J., Ney, H., A systematic comparison of various statistical alignment
models. Computational linguistics, 2003, 29(1), pp. 19-51.

[14] Willmott, C.J., Matsuura, K., Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model performance.
Climate research, 2005, 30(1), pp. 79-82.

Schedae Informaticae Vol. 25 (2016): 153-164

doi: 10.4467/2083847651.16.012.6193 t | | | 2017
theoretical foundations |
of machine learning, Krakow

Data Selection for Neural Networks

MIROSLAW KORDOS
Department of Computer Science and Automatics
University of Bielsko-Biala
Willowa 2, 43-309 Bielsko-Biala

e-mail: mkordos@ath.bielsko.pl

Abstract. Several approaches to joined feature and instance selection in neural
network leaning are discussed and experimentally evaluated in respect to classi-
fication accuracy and dataset compression, considering also their computational
complexity. These include various versions of feature and instance selection
prior to the network learning, the selection embedded in the neural network and
hybrid approaches, including solutions developed by us. The advantages and
disadvantages of each approach are discussed and some possible improvements
are proposed.

Keywords: Neural Networks, Data Selection, Feature Selection, Instance Se-
lection

1. Introduction

There are three main purposes of data selection: limiting the dataset size and thus
accelerating the model learning process, removing noise from the data and thus im-
proving the model predictive capabilities and making the data interpretation easier
by humans [1, 2]. In this paper we discuss how data selection can be addressed in
neural network learning. Since datasets consists of instances and the instances con-
sist of features, the dataset size can be reduced by feature selection, instance selection
or both. Moreover, the selections can be performed as well prior to neural network

Received: 11 December 2016 / Accepted: 30 December 2016

154

learning as by the neural network itself during the learning process. Our purpose is
to show some interesting properties of data selection obtained with different feature
or different instance selection methods, propose some improvements and discuss how
to choose the optimal method.

Typically in data selection we fist obtain a little improvement of the prediction
accuracy as we remove some data and then the accuracy slightly but constantly drops
as more data is removed. Then after exceeding some limit the prediction accuracy
begins constantly dropping and if we want to go further with compression we must
choose some point depending on our preferences on the compression-accuracy plot.

Feature selection prior to model learning can be done either with filters or with
wrappers. Wrappers really wrap the learning algorithm so it is not strictly done before
the learning process but rather before deciding which will be the optimal configuration
of the final model used for prediction. For the experiments we carefully chose some
filter methods (section 2.).

Instance selection is discussed in this paper is more details than feature selec-
tion and we examine some possible improvements and parameterization of instance
selection methods (section 3.).

We tried to answer the question: what is better feature selection or instance
selection or both, and if both then how feature and instance selection influence each
other and how they should be applied together for the best results (section 4.).

Another approach is not to perform any preliminary data selection but let the
neural network select the relevant data itself. That includes selecting features (section
5.), instances (section 6.) and both of them (section 7.). That of course required us
to make some adjustments of the neural learning process and error function.

Finally we experimentally compare the discussed approaches and their results
(section 8.) and present the conclusions from this study (section 9.).

2. Feature Selection Before Network Learning

A detailed discussion of feature filters and wrappers can be easily found in literature
[3, 4]. When the expert knowledge is available it can be used to make some preliminary
feature selection [5, 6]. To select the methods we are going to use, we first performed
some preliminary experiments with different feature selection and different instance
selection methods using the RapidMiner software [7] and then we chose the methods
that were among the best in term of the balance between compression, classification
accuracy and running time.

W tested the following feature filters available in RapidMiner: Information Gain,
Information Gain Ratio, Deviation, Chi Squared, Gini Index, Uncertainty, SVM,
PCA, Correlation, Rule, Relief. We also tested three wrappers: forward selection,
backward selection and evolutionary selection. Although the backward selection wrap-
per and evolutionary selection were able to discover more informative feature subsets,
resulting in bit higher classification accuracy with the same number of features, their
execution time was between two and four orders of magnitude longer, what in the
case of the biggest data sets was totally impractical for our purposes. The results
of the filter evaluation are presented in Table 1 in terms of the average classification

155

accuracy over the 10 datasets obtained in 10-fold crossvalidation and the average rel-
ative calculation time. This was done for the number of features being the nearest
integer to 60% and 30% of the original number of features. Based on the test results,
the SVM-based filter produced the best accuracy, but for the further experiments
we chose the second filter in the accuracy ranking: Information Gain, because the
SVM-based filter was over 100 times slower.

The information gain criterion I'G is defined as the difference between the entropy
before and after the optimal data split on feature f:

C N C
1Gy == 3" plei) -log(ples)) + 3 [plens) - log(plens))] (1)
=1 n=1 =1

where p(¢;) is the probability that an instance belongs to class i and p(c,;) is the
probability that an instance within the bin n belongs to class ¢, v is the number of all
instances and v, is the number of instances in bin n, C' is the number of classes and
N is the number of bins. We did not use any methods that create new features (as
PCA), because that makes the data interpretation and logical rule extraction in most
cases totally impractical; the complexity of the obtained rules exceeds human capa-
bilities of making any logical conclusions, what is important in most of our practical
applications.

Table 1. Average values over the 10 datasets of classification accuracy of neural
networks for the nearest integer of 60% and 30% of features (F60-acc, F30-acc) and
execution time relative to Information Gain time with different feature filter methods
using the RapidMiner implementation.

Method F60-acc | F30-acc | time

no selection 92.74 92.74 0.0
Information Gain 92.12 91.02 1.0
Information Gain Ratio 92.37 89.80 1.0
Deviation 91.78 88.37 0.2
Chi Squared 91.82 90.48 0.8
Gini Index 92.07 89.52 1.1
Uncertainty 91.82 91.04 1.9
SVM 93.01 91.24 102

PCA 92.51 89.13 0.5
Correlation 89.35 87.40 0.1
Relief 93.02 88.27 245

Rule 92.15 88.44 16

3. Instance Selection Before Network Learning

Instance selection methods fall into two categories: noise filters and condensation
methods. Noise filters remove noisy instances and thus improve the classification
accuracy, but they compress the data very little. Condensation methods compress

156

the data and speed up the neural network (or any other classifier) training effectively
but usually also decrease classification accuracy [8]. Frequently stronger compression
causes stronger accuracy loss. If methods from both families are used then noise filters
should be used first.

In the experiments, we first evaluated the performance of the instance selection
algorithms implemented in the Information Selection extension for RapidMiner to
decide, which one to use. Again our criteria were similar as with feature selection: the
method should produce high compression, low accuracy loss and have short running
time.

The description of many instance selection algorithms can be found in [9, 10]. The
experimental comparison was also done in [11]. However, the authors used only small
datasets, and thus, as the general tendency is preserved between their and our study,
we obtained different results for our much larger datasets.

Also some methods of evolutionary-based instance selection were proposed in [12,
13, 14]. However, the computational time was several order of magnitude longer and
for this reason we did not take them into account, although the authors reported their
method more accurate. Another shortage of the evolutionary-based methods is that
the selection is performed without letting us understand while particular instances
are selected.

We evaluated the following instance selection algorithms using the RapidMiner
Information Selection Extension: GE, RNG, CNN, IB2, IB3, DROP-3, RHMC, MC,
ENN (which is the only noise filter on that list) and ENN. In the case of feature filters
the results were very similar while averaged over the 10 datasets and thus selecting
the proper feature filter was not so crucial. However, in the case of instance selection
algorithms the differences are really very significant and here the proper choice is
much more important.

Two of the best performing instance selection algorithms were ENN (Edited Near-
est Neighbor) followed by IB3 [?] and DROP-3 [15]. However, they did not always
provided the best accuracy (in some points ENN followed by ENN or even GE was
better) and therefore we decided to use ENN with IB3 and ENN with a modified
CNN (Condensed Nearest Neighbor).

The IB3 works in a similar ways as CNN. It takes the instances misclassified by
k-NN and then it removes from the selected set the instances, which can be removed
without the loss of classification accuracy.

DROP-3 [15] is a decremental algorithm, which first implements ENN and then
examines which instances can be removed while their neighbors are still correctly
classified without them. The examination is not in random order but staring from
the instances situated furthest from other class instances (so called ”enemies”).

The compression of ENN with IB3 and DROP-3 was two times stronger than that
obtained with ENN followed by CNN, but the accuracy was comparable. DROP-3 was
situated almost on the same point on the compression-accuracy plot as ENN followed
by IB3. Finally we decided to use first IB3 and then ENN with CNN. ENN removes
noise by removing the instances which have a different class than predicted by the
k-NN algorithm. Then CNN or IB3 removes the instances that can be eliminated
without adversely affecting classification.

One of the basic problems with the condensation algorithms such as CNN, IB3 or
the DROP family, is that there is usually no direct way to control how aggressively

157

they perform the instance elimination, unlike in feature filters, where we can select
the desire numbers of remaining features. Thus we used two approaches to overcome
the limitations: first bagging of instance selection methods [16] and in this work
modification of the rejection criterion in the algorithm itself.

Table 2. Average values over the 10 datasets of classification accuracy of neural
network, number of selected instances and execution time relative to CNN time of
instance selection process for different instance methods using the RapidMiner imple-
mentation.

Method accuracy | %Instances | time
no selection 92.74 100 -

GE 90.71 45 130
RNG 86.81 12 10
CNN 86.74 8.0 1.0
1B2 85.12 7.7 0.2
1B3 86.56 4.0 3.5

DROP-3 87.13 4.0 14%**
MC 82-86* 3.5-20 8.0
RHMC 82-86* 3.5-20 8.1
ENN 93.17 90 1.0
ENN+CNN 87.44 7.1 2.0
ENN+IB3 87.15 3.9 4.5
ENN 93.17 90 1.0

* - MC and RHMC provide various results depending on adjustable parameters,
but for the same number of instances they always provided lower accuracy then the
four best algorithms.

** _ DROP-3 was implemented as a Weka plugin, so the time comparison may not
be adequate in this case.

In the case of bagging we use the same idea as bagging in classification, but
instead of classifiers, instance selection algorithms constitute the ensemble. Then we
establish a threshold of how many instance selection algorithms from the ensemble
want to select a given instance [16]. Say, we had 10 algorithms. We decide that if
m = 5 of them want to remove a given instance then the instance will get finally
removed. But we can also use any arbitrary number for m between 1 and 10. The
higher m the less aggressive is the selection - the compression will be weaker but the
accuracy will be higher (which corresponds to a higher number of attributes kept in
feature selection).

In our tests bagging worked very well, but its drawback was higher computational
cost. Thus the other solution is to use variable m in the inner k-NN algorithms within
CNN (and ENN - although it is not so crucial). For example, we can use the number
of nearest neighbors k = 9. In the standard CNN an instance will get removed if it
has the same class as more then k/2 of its neighbors, that is m = 5 in that case. If we
increase m say to 8 then the instance will get removed if it has the same class as more
then m = 8 of its neighbors, so the selection will be less aggressive and some of the
instance situated close to class boundaries that with m = 5 would get removed will be

158

kept [17]. Again the compression will be weaker but the accuracy will be higher. This
is shown in the pseudocode, where kNN(.) is the class of at least m of k neighbors in
the k-NN algorithm and C(x;) is the real class of instance x;. In particular k£ and m
can be different for ENN and CNN.

Algorithm 1 The modified ENN4+CNN algorithm
Input: original set T
Output: reduced set S (now empty)
for i = 1...numlInstances do
if C'(x;) #kNN(k, m, (T without x;),x;) then
mark x; for removal
end if
end for
remove all marked instances from T
add randomly one instance from T to S
for i = 1...numInstancesin T do
if C(x;) #kNN(min(k, sizeOf(8S)), min(m, sizeOf(8S)),S,x;) then
add x; to S
end if
end for
return S

4. Joined Feature and Instance Selection Before Network Learning

Our experiments with data selection as the preprocessing step showed that feature
selection (F'S) should be performed prior to instance selection (IS). We tested many
different configurations, such as FS-IS, IS-FS, FS1-IS1-FS2-1S2, FS1-IS-FS2 and oth-
ers. Also in the case of repetitive feature and instance selection we tried making the
reduction stronger at each iteration. However, comparing that to the simplest strat-
egy FS-IS, there was no significant difference on the compression-accuracy plot. Our
explanation of that phenomenon is that in most data there is a higher percentage of
irrelevant features than of noisy instances (most of the instances were removed be-
cause of their redundancy and not because of noise). Thus, we can perform efficiently
feature selection using all instances, but less efficiently instance selection using all
features. Moreover, several feature filters are based on some measure of correlation
or some variants of information gain. Removing too many instances can make them
work less efficiently. On the other hand most instance selection methods are based
on the distance between the instances. If there are irrelevant features, we get not the
optimal distance measures. A partial solution to that problem is multiplying the dis-
tance component in each feature direction by this feature importance obtained from
some feature ranking.

Some papers proposed evolutionary optimization of feature and instance selec-
tion [18, 14], but as already mentioned in section 2., we did not consider this option

159

first because of the computational complexity and second because evolutionary opti-
mization, similarly as feature construction methods (as PCA) does not enable us to
understanding why particular results were obtained.

5. Feature Selection Embedded into Network Learning

Feature selection with neural networks can be done in several ways. The two basic
approaches are by the analysis of weights, including pruning methods and by input
data perturbances [19]. In perturbance analysis we replace the values of particular
feature with random values in the test vectors and see how this influences the network
accuracy. In weight analysis we assume that the less important features will generate
smaller absolute values of weights and we can reject the features with the lower
weighted sum of weights r; (Eq. 2.). The weights can be also enforced to small
values with a regularization term. The weight analysis was used in our experiments.
A more complex method also consider the derivatives or the output neuron weights.
Due to the non-linear transfer functions the results depend on the actual position on
the transfer function and in classification task at the end of the training the position
is predominantly in the saturated area, so there must be some more effort put into
constructing an efficient solution. We used the following feature ranking measure:

N

‘win|
T = —_— 2
' 7; Z?:l |wn| ()
where r; is the predictive power of the i-th feature, N is the number of hidden
layer neurons, F' is the numbers of features, w;, is the weight connecting the n-th
hidden neuron with the i-th feature and wy, (= 0...F) is the f-th weight of the n-th
hidden neuron.

The random perturbances of single feature values were not evaluated experimen-
tally, because in the experiments we were removing features (thus setting them to
zeros) before network training and that already partially corresponds to the pertur-
bance analysis.

6. Instance Selection Embedded into Network Learning

We use the MLP neural network with hyperbolic tangent transfer function and with
the number of output neurons equal to the number of classes. Most of the existing
neural network training algorithms can be used. The error for a single vector is given
by the following formula:

C

Error(z,) = Z(yac — Yee)? (3)

c=1

where C' is the number of classes, y,. is the actual value of ¢ — th output neuron
signal and y.. is the expected value of ¢ — th output neuron signal (which is 1 if the

160

current instance class is represented by the i — th output neuron and -1 otherwise).
We assume that a vector is classified correctly if the neuron associated with its class
gives a higher signal than any other output neuron.

If an instance is classified incorrectly, the error the network gives as a response
to that instance is high. If an instance is classified correctly and is situated far
from a class boundary, the error obtained for that instance is very low (due to the
hyperbolic tangent transfer function shape). Thus we can remove the instances with
the highest error (greater than maxError), as they are outliers and these with the
lowest errors (lower that minError), as they do not help to determine the proper
decision boundary [20]. By adjusting the two parameters maxError and minError
we can regulate the compression level. That however cannot be done from the very
beginning of the network training, because at that stage the network produces more
or less random errors for each instance, as the learning starts with random weights.
As the training progresses, we can gradually decrease maxFError, starting from its
maximal possible value (4C, assuming MSE error measure). minError does not
require gradual increasing but can be set at the end of network learning. maxError
improves mostly accuracy and compression very little [20]. We set maxError = 1.6+
0.16 - numberO fClasses. The influence of minError values on the data compression
and accuracy together with feature selection is experimentally evaluated in section 8.

7. Joined Feature and Instance Selection Embedded into Network Learn-
ing

To determine the optimal order of joined feature and instance selection with neural
networks, we conducted experiments trying feature selection first, instance selection
first and simultaneous feature and instance selection. As in the case of the selection
prior to network learning, the results confirmed that the best option is to perform
feature selection first and then instance selection. Thus the network training consists
of three parts: 1. standard network training, 2. removal of irrelevant features, 3.
removal of irrelevant instances. After the second step the training can either continue
or it can be restarted from random weights. Better results were obtained with the
restart.

We observed in the experiments that instance selection embedded in neural net-
work worked well, but feature selection was in some cases as good as done with feature
filters and in some cases less effective. For that reason we added another option for
feature selection. First we build a simple neural network with three hidden units and
train this network separately on each feature. We use early stopping, so that we can
measure the classification accuracy on a training set, without the need of crossvali-
dation. Then we sort the features by the classification accuracy. Then we add the
features to the reduced dataset starting from the most informative one. However,
before we add the next one, we calculate its correlation with all the already added
feature. If the correlation with at least one of them is higher than the threshold, we
reject this feature. This appeared to be the most accurate option.

161

8. Experimental Evaluation

The purpose of the experiments was to evaluate particular methods in terms of classifi-
cation accuracy and data compression and determine the Pareto-line for each method.
The Pareto-line is a line in the compression-accuracy coordinates, shown in Fig. 1
that connects the points with the best compression for a given accuracy and best
accuracy for a given compression, so that no other points exist that can improve
both. The compression is defined as percentage of remaining features multiplied by
percentage of remaining instances (lower value is better).

In the experiments we used RapidMiner for feature selection and some of the
instance selection before the network training. All the other experiments, especially
data selection embedded into neural network were performed in our own program. All
the software we used can be downloaded from our web page at www.kordos.com /tfml2017.

We trained the networks with the R-prop algorithm. We used networks with one
hidden layer. The numbers of neurons in the hidden layer was equal to the geometric
mean of the number of inputs and number of classes. We performed the experiments
on 10 classification datasets from the Keel Repository [21]: Ionosphere (351,33,2),
Image Segmentation (210, 18, 7), Magic (19020, 20, 2), Thyroid (7200, 21, 3), Page-
blocks (5472, 10, 5), Shuttle (57999, 9, 7), Sonar (208, 60, 2), Satellite Image (6435,
36, 6), Penbased (10992, 16, 10), Ring (7400, 20, 2). The numbers in the brackets are:
number of instances, number of features, number of classes. All the experiments were
performed in 10-fold crossvalidation and repeated 10 times. The purpose of repeating
the experiments 10 times was to average over the initial random network weights and
thus to ensure more stable and reliable results.

Table 3. Average values over the 10 datasets of classification accuracy of neural
networks (F100-A, F60-A, F30-A) and number of selected instances (F100-I, F60-
I, F30-1) for respectively 100%, 60% and 30% of features with three data selection
methods (the real numbers of features were the nearest integers to these percentages).

Method IS F100-A | F100-I | F60-A | F60-I | F30-A | F30-I
FS: Inf. Gain | no selection 92.74 100 92.12 100 91.02 100
IS: ENN+CNN | m=8, k=9 93.01 35.22 92.30 | 29.11 | 91.03 | 27.81
with variable m=7, k=9 92.65 18.91 91.58 | 16.15 | 88.76 | 15.11
m in k-NN m=>5, k=9 87.44 7.11 87.11 5.89 87.72 6.41
IS: ENN+IB3 ENN+IB3 87.15 3.85 86.88 3.98 87.01 4.95
FS in separate | no selection | 92.74 100 92.90 100 91.45 100
network minE=0.03 93.02 38.45 92.30 | 32.98 | 91.23 | 36.40
IS embedded minE=0.1 92.64 19.98 91.91 | 22.12 | 88.76 | 26.78
into NN minE=0.3 89.05 7.11 88.23 5.89 88.25 | 10.23
FS embedded | no selection 92.74 100 92.12 100 88.34 100
into NN minE=0.03 93.02 8.45 92.15 | 33.15 | 88.94 | 38.14
IS embedded minE=0.1 92.61 19.98 91.05 | 24.98 | 87.02 | 14.18
into NN minE=0.3 89.05 7.11 87.91 9.15 86.15 | 10.78

The standard deviations were between 0.5 for the largest to 3.0 for the smallest
are statistically

datasets.

The T-test confirmed that the differences in Table 3.

162

significant. (For example for the accuracies of 90.00 and 91.00 with 100 cases, the
p-value of 0.05 is obtained with standard deviation of 3.585.)

4
64 m O+
b
32) m + f/
16

compression [%)]
=]
d -]

86 87 88 89 90 91 92 93
accuracy [%]

Figure 1. Compression (percentage of remaining features times percentage of re-
maining instances) vs classification accuracy. The compression axis is in logarithmic
scale. A Pareto line is shown separately for each method (square = FS: Inf. Gain,
IS: Mod. ENN+CNN, cross = FS in sep. network, IS embedded, circle = FS and IS
embedded, triangle: FS: Inf. Gain, IS: ENN+IB3).

9. Conclusions

For the biggest data sets we were able to remove about 98-99% of instances without
noticeably accuracy loss, but for smaller datasets the reduction was much weaker.

The most effective data selection is performed by feature selection followed by
instance selection. This is true as well as for the selection prior to network training
as embedded into the neural network. Currently the Pareto line for the selection with
information gain and ENN+IB3 and then modified ENN+CNN is situated closest to
the right lower corner, so this method looks the better. However, each of the methods
have some strengths.

Feature ranking obtained by learning a simple neural network on a single features
with removal of highly correlated features worked very well. The standard feature
rankings, as information gain, were on the second place, while feature selection by
neural network weight analysis on the third place. However, the last methods can be
further enhanced by considering the data flow through the entire network, not only

163

the input to hidden weights and thus may produce better results, which will the topic
of a further study.

Embedding noise reduction into the neural network learning process gives usually
very good results. That can be attributed to the shape of decision boundaries, where
the k-NN algorithm have the tendencies to smooth the edges.

Instance selection as noise removal works quite well in each case. There is however
one problem with instance selection as data compression. Both DROP-3 and the
instance selection based on the network error overcomes the shortage of CNN that
it works in a random order, as they both preserve more of the instances situated
close to class boundaries. However, both of the methods rely on the distance to
the opposite class measured either directly (CNN, IB3 and the DROP family) or by
the instance location reflected by error produced by the hyperbolic tangent function
transformation. But both of the approached do not consider the fact, that the distance
between opposite class instances maybe different in different areas of the input spaces
and thus sometimes tend to remove rather the instances closest to the boundary,
even if they are hidden between the "first row” of instances then the instances that
are further, but in the first row and thus needed to preserve the boundary. That is
considered by other instance selection methods, which examine the classes of neighbor
instances of Voronoi cells, but in spite of that they do net perform better. Finding
an effective solution to this problem is still open.

It is likely that the results can be further improved if the variable m in the k-
NN algorithms is used also with IB3 and DROP-3 algorithms, which have better
compression than CNN with comparable accuracy. That will be another topic of our
future research.

10. References

[1] Kordos, M., Blachnik, M., Bialka, S., Instance selection in logical rule extraction
for regression problems. Lecture Notes in Artificial Intelligence, 2013, 7895, pp.
167-175.

[2] Blachnik, M., Kordos, M., Simplifying SVM with weighted LVQ algorithm. Lec-
ture Notes in Computer Science, 2011, 6936, pp. 212-219.

[3] Liu, H., Computational Methods of Feature Selection. Chapman and Hall, 2007.

[4] Stanczyk, U., Jain, L.C., Feature Selection for Data and Pattern Recognition.
Springer, 2015.

[5] Uribe, C., Isaza, C., Ezpert knowledge-guided feature selection for data-based
industrial process monitoring. Rev. Fac. Ing. Univ. Antioquia, 2012, 65, pp.
112-125.

[6] Kordos, M., Cwiok, A., A new approach to neural network based stock trading
strategy. Lecture Notes in Computer Science, 2011, 6936, pp. 429-436.

164

7]

8]

Hofmann, M., Klinkenberg, R., RapidMiner: Data Mining Use Cases and Busi-
ness Analytics Applications. Chapman and Hall/CRC, 2016.

Sun, X., Chan, P.K., An analysis of instance selection for neural networks to
improve training speed. International Conference on Machine Learning and Ap-
plications, 2014, pp. 288-293.

Garcia, S., Derrac, J., Cano, J.R., Herrera, F., Prototype selection for nearest
neighbor classification: Taxonomy and empirical study. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2012, 34, pp. 417-435.

Olvera-Lapez, J.A., Carrasco-Ochoa, J.A., Martin, J.F., Kittler, J., A review of
instance selection methods. Artificial Intelligence Review, 2010, 34, pp. 133-143.

Grochowski, M., Jankowski, N., Comparison of instance selection algorithms.
Lecture Notes in Computer Science, 2004, 3070, pp. 580-585.

Antonelli, M., Ducange, P., Marcelloni, F., Genetic training instance selection
i multiobjective evolutionary fuzzy systems: A coevolutionary approach. IEEE
Transactions on Fuzzy Systems, 2012, 20, pp. 276-290.

Anwar, I.M., Salama, K.M., Abdelbar, A.F., Instance selection with ant colony
optimization. Procedia Computer Science, 2015, 53, pp. 248-256.

Derrac, J., Cornelis, C., Garcia, S., Herrera, F., Enhancing evolutionary instance
selection algorithms by means of fuzzy rough set based feature selection. Informa-
tion Sciences, 2012, 186(73-92).

Wilson, D.R., Martinez, T.R., Reduction techniques for instance-based learning
algorithms. Machine Learning, 2000, 38, pp. 257-286.

Blachnik, M., Kordos, M., Bagging of instance selection algorithms. Lecture
Notes in Computer Science, 2014, 8468, pp. 40-51.

Kordos, M., Instance selection optimization for neural network training. Lecture
Notes in Artificial Intelligence, 2016, 9692, pp. 610-620.

Tsaia, C.F., Eberleb, W., Chu, C.Y., Genetic algorithms in feature and instance
selection. Knowledge-Based Systems, 2013, 39, pp. 240-247.

Leray, P., Gallinari, P., Feature selection with neural networks. Behaviormetrika,
1999, 26, pp. 145-166.

Rusiecki, A., Kordos, M., Kaminski, T., Gren, K., Training neural networks on
noisy data. Lecture Notes in Artificial Intelligence, 2014, 8467, pp. 131-142.

Alcala-Fdez, J., et al., Keel data-mining software tool: Data set
repository, integration of algorithms and experimental analysis framework.
http://sci2s.ugr.es/keel /datasets.php, Journal of Multiple-Valued Logic and Soft
Computing, 2011, 17, pp. 255-287.

Schedae Informaticae Vol. 25 (2016): 165-176

doi: 10.4467,/20838476S1.16.013.6194 t | | | 2017
theoretical foundations |
of machine learning, Krakow

Online Supervised Learning Approach for Machine Scheduling

BARTOSZ SADEL, BARTLOMIEJ SNIEZYNSKI
AGH University of Science and Technology
Faculty of Computer Science, Electronics and Telecommunication
Department of Computer Science
al. Mickiewicza 30, 30-059 Krakow
e-mail: sadel@agh.edu.pl, bartlomiej.sniezynski@agh.edu.pl

Abstract. Due to rapid growth of computational power and demand for faster
and more optimal solution in today’s manufacturing, machine learning has lately
caught a lot of attention. Thanks to it’s ability to adapt to changing conditions
in dynamic environments it is perfect choice for processes where rules cannot be
explicitly given. In this paper proposes on-line supervised learning approach for
optimal scheduling in manufacturing. Although supervised learning is generally
not recommended for dynamic problems we try to defeat this conviction and
prove it’s viable option for this class of problems. Implemented in multi-agent
system algorithm is tested against multi-stage, multi-product flow-shop problem.
More specifically we start from defining considered problem. Next we move to
presentation of proposed solution. Later on we show results from conducted
experiments and compare our approach to centralized reinforcement learning to
measure algorithm performance.

Keywords: supervised learning, reinforcement learning, scheduling, multi-agent
system

1. Introduction

Machine scheduling problem is almost as old as the first Ford’s assembly lines, dat-
ing back to twenties of 19th century. Rapid development of manufactures sparked

Received: 11 December 2016 / Accepted: 30 December 2016

166

efforts to make this process more efficient. Early on heuristic methods have caught
the attention. Those included Just in Time(JIT), Kanban and few others [1]. Those
methodologies emerged from car manufactures in Japan and soon become popular in
other industries. IT business had initially adapted those concepts to team manage-
ment process, to become scheduling problem solutions later on. Simultaneously pull
and push systems where introduced in [2].

Machine scheduling may be considered as an optimization problem. Unfortunately,
due to being NP-hard, finding optimal solution is not an easy task. Therefore, many
algorithms were developed to solve it with increasing effectivity. Along finding new
methods, problem also evolved to become its on-line version in which the goal is to
optimize scheduling as continuous process with orders/tasks being generated when
system is already working. In the past few years, agent-based solutions with use of
reinforcement learning have been proposed for such cases [3, 4].

In this paper we consider agent-base approach with another machine learning
strategy, that is supervised learning. Results in other domains show that in com-
plex environment this type of learning gives improvements faster than reinforcement
learning [5, 6].

In this paper, we will begin with defining on-line machine scheduling problem.
Next, we will propose our solution and provide necessary theory. This will be followed
by conducted experiments and conclusions. Our aim is to check whether supervised
learning can replace reinforcement in dynamic environments.

2. Problem Representation

In this paper dynamic version of flow-shop problem is considered. It should reflect
real manufacturing process where we have company producing products of n different
types. Each product requires processing on m different stations. Single station may
contain any number of machines. It’s enough for a product to be processed just by one
machine on every station. To make similarity with traditional job-shop, we can name
process of producing product a job and processing a product by a certain machine
a task. Later on we will use these terms interchangeably. Each product needs to
pass all the stations. Additionally path alongside stations have to be the same for all
product types. Thanks to these restrictions we can number stations by the sequence
in which jobs will be passing through those. Since in real life manufacturing situation
usually there is a delay between finishing processing of a product on one machine and
starting on the next one, we have to introduce buffers between stations, where we can
store the waiting products. As orders usually consist of more than just one unit of
product, we need additional buffer for finished jobs where products are stored until
whole order is completed. Sample configuration is presented in figure 1. To simplify
demonstration without loss of generosity we assumed different types of products to
be marked as circles, pentagons and octagons. Every product in presented example
must proceed sequentially by Stationi, Station2 and Station3. Finished products are
stored in last buffer, called Completed.

167

Buffer1 Station1 Buffer2 Station2 Buffer3 Station3 Completed
| Machine2_1 _ |
| Machine1_1
ey ==l
000|0 |00 OO |O Mz 25 LG |O00 OO Machine3_1 Q000
| S : |

o) ===l

L 0

Figure 1. Example of model representing considered problem

Every order o; in our model can be defined as:

0; = (pi, ¢i, diy 73, fiy tYi, Gi) (1)

where p; stands for priority, ¢; for creation time, d; for due time, r; for reward received
after order completion, f; for penalty received if order is not completed on time,
ty; for the type of the product order demands and ¢; for quantity of this product.
Aty is Poisson parameter describing the frequency with which orders of type ty are
arriving. Number of product units g; is drawn from uniform distribution U(a, b) where
a and b are minimum and maximum values. After arriving, orders are stored in the
queue sorted by their priority, so the most important ones are delivered first. When
new order comes to the system, products of which it is composed are inserted into
Buf fery. Then machines from Station, takes products from it and work on them.
After processing is finished products are stored in Buf fers. Next the same happens
for the next stations until products finally gets to Completed buffer. When there will
be enough products in buffer, we are delivering first order from our queue. Depending
if we managed to deliver order before due time it is possible to get reward or penalty.
Machine is defined as:

M; ;= (Hij,Vij.tij tyij) (2)

where ¢ is number of station, j is number of machine in station, H; ; is the health of
machine, V; ; is the table containing velocity of processing of different product types
on this machine, ¢; ; is the time is takes to reconfigure machine and ty; ; is type of
product machine is configured to process. Machines are allowed to change the type
of product they are processing only when they are idle. Each time, machine have ty
different actions to choose, where each one corresponds to processing different product
type. When action of changing processed type is chosen, machine needs to remain
idle for a fixed period of time which simulates machine reconfiguration. In our model
every machine can process just one product at a time. Thanks to this property of our
model, sometimes it is more beneficial for a machine to wait for the product of the
currently configured type, instead of changing. Additionally each machine can process
each product type with different speed. This property makes certain machines better
at processing one type of a product, where another one may work better with other
type. Although we allow for situations where single machine or all machines in station
needs no time for processing certain type of products, we still demand this product
to pass through that station. In our environment every machine has chance to break
down. When it happens currently processed product is pushed back to the previous
buffer. Machine remains than idle for a ¢; ; of turns, simulating fixing process, after
which it starts working again.

168

Important thing in every model is optimization criteria which is used to describe
system effectiveness. In problem we are considering there are many different param-
eters we may want to optimize. The most common would be profit maximization or
minimization of product amounts in buffers. First option is reflecting most business
scenarios. This way we don’t only look for most valuable orders to complete, but
we also have to the handle the ones with the highest penalty. The second option
chooses what to do basing on number of products waiting in all buffers excluding the
Completed one. This way we are minimizing idle time of machines.

Table 1. Notation of parameters

T Number of product types

ty Product type

A Poisson parameter describing frequency of orders with product

Y type ty

M; ; Machine j in station i

Hj; Health of machine j in station ¢ in turn ¢

v Table with velocities of processing different product types
©J on machine j in station 4

1 Time it takes to reconfigure machine j in station ¢ in turn ¢
0; I-th order

i Order priority

T Order reward

fi Order penalty

Ci Order creation time

d; Order due time

qi Quantity of product units in order

Buffer;ty Quantity of products ty in buffer of 1-th station in turn ¢
Station; I-th station
Primit Threshold used in supervised learning
Uty Unit price of product type ty
Sty Switch cost of product type ty

In this paper we chose to use the last option as it seems interesting for manufac-
tures which don’t want machines to be idle. Example of such machine may be foundry
furnace which is shut down only once every twenty years and we would like to use it
as much as we can since it can’t be turned off. Used notation by us is gathered and
presented in table 1.

169

3. Proposed Solution

Our solution takes usage of approach proposed by Sniezynski in [6]. Namely, we will
try to employ supervised learning algorithms to solve problem previously defined in
section 2. It’s done by introducing learning agents with special architecture allowing
them for taking usage of machine learning algorithms, designed for static problems.

First we need to model our problem as a multi-agent system. To do so we will
treat every machine like a separate intelligent agent. Each of them will have it’s own
knowledge base and own clagsifier. Decisions about changing processed product type
by machine M; ; will depend only on the decision of the agent connected with this
machine itself.

Algorithm implemented by our system is presented on figure 3. In this diagram
we can see flow of simulation in implemented solution. The first step in every turn
is order generation. Whether order should be generated this turn and if so, how big
should it be depends on A, and parameters of experiment establishing lower and
upper boundary of order sizes. Next, products form generated orders are added to
the buffer of first station. After that for each machine in station we check if it has
finished processing of any product in previous turn. If so, we collect it so later we can
add it to the buffer in next station. Next step is to fire learning process on machine’s
clagsifier. In our experiments we do this every 5 turns. Later, every machine has a
chance to change type of processed product. The change is impossible, if machine
is already processing some product. In case of changing product type we save that
information in a form of entry in our knowledge base. It’s value is calculated using
equation 3. In other case we continue to process currently processed product. In this
places we are also checking if machine should break in this turn. Next, we go on
to the next machine in station. After processing of all machines in a single station
we move on to the next station but this time products added to the buffer are ones
collected in previous station. When all stations are finished we start the next turn.

Architecture of single agent is presented in figure 2. This model introduces two
main modules. First of them, named Processing module, is responsible for perceiving
of the environment. It receives informations from environment and other agents.
Later on, performs transformation of those observations into format appropriate for
the classifier. Afterwards, learning module is asked if it knows what to do in a current
situation basing on previously learned knowledge. Learning module communicates
with classifier which role is to classify received data into one of the T classes where T
is number of different product types considered in problem instance. If this classifier
can choose proper action with probability higher than Py, it simply responds with
this action. If it’s unsure what to do it can trigger learning process using gathered
training data. After that learning module uses classifier again and returns the best
choice without checking against pj;mi:. Finally, processing module puts chosen action
into practice.

Although from outside this may look as reinforcement learning it’s quite different.
Where in reinforcement learning agents have the knowledge about previous states
hidden in trained classifier, here we can collect history of environment states and
taken actions (decisions made by agents) in form of training set. This way we can

170

zAgents E zEnviroments E
Problem Obsgervatjons
- -+
Learning Processing
module Response module
» Actiong
: 2
- *
Training Y Feward/Panalty
‘: data i
",.-F
\.‘1-_._,_;‘-"‘ “"-_._,_-F"J
Classifier Training
data
S— —

Figure 2. Used agent architecture

explicitly see experiment history and learn from it.

Each entry in the training set consists of two parts. The first of them is data and
the second is a label, also called a category, which is description of the data part.
There are two common ways to construct entries in problems like one considered
here. In first of them data part of each entry consists of buffers from each station
and health property of every machine. Product type which should be produced in
this state is used as category in this approach. This method is often used as it’s
simple to implement and directly tells us, what should we do in given state. The
second method combines data part and category from previous method to create the
data part. As a label in this option we are using quality of the decision. Although
harder to implement, this method offers us benefits, in a form of a way to express
how good each decision is. Thanks to this, we can connect the same state with two
different actions, where in the first method this would be impossible. In our work
we are using second approach as we hope that ability to express value of moves, will
improve proposed solution.

Uty * sgn(Buffer;ity)7 if ty = ty; ; 3)

ugy * sgn(Buf feri,) — si,, otherwise

f(ty,l,],t) = {

Each entry is composed of amounts of products in buffers from 1 to m, health of
all machines and a chosen action, which takes one of ty values. Value of our entry
is calculated using equation 3. Entries are added to training set after every machine
decision.

is machine
broken?

i

generate new

products

collect finished

learning turn?

processing of

add instance to

START

orders

add

to buffer

products

train classifier

progress?

training set
return product to
process product butter
NoO
ast machine
in station?
YES

Figure 3. Flow diagram

last station?

last turn?

FINISH

of implemented simulation

171

172

Learning process can be started every [turns or when quality of the best action
is lower than a certain threshold. Depending on tools used it may mean constructing
new classifier based on whole training set or just improve it using previously unseen
examples. We have to take in to account that training classifier may be computation-
ally expensive depending on the number of stations and machines in each of them, as
they make the amount of collected entries significantly larger. This property makes
supervised learning worse than reinforcement learning in problems where products
are processed fast and there is no much time for decision-making. However in cases
when processing takes hours or even days, learning may be run parallel to machine
work thus be imperceptible.

4. Results

In order to test our approach various experiments were conducted. In all of them
our method was tested against multi-agent reinforcement learning proposed in [4].
Parameters used in simulations are presented in table 2. Every test was conducted
10 times and the presented results are the mean of received ones. Although system
is able to carry out much bigger simulations we chose to present smaller ones. This
choice is motivated by similar configurations used in [4], which allows us for a better
comparison between both solutions.

4.1. Comparison in a 2x2 System

First test were run in a simple configuration containing only 2 stations with 2 machines
each. In this setup algorithms should learn quickly.

Buffers

250

200

150

100

50+

0

Reinforcement learning
Supervised learning

ff.mw«"

ﬂ’“‘" }‘CNQQ/WM»«M\WMW .

e

»

s

400 600 800
Turn number

(a)

1000

Rewards

5000

4000 -

3000 -

2000 -

1000 -

Supervised learning —]
Reinforcement learning”

400 600 800 1000
Turn number

(b)

Figure 4. Results for 2x2 configuration

In figure 4a we can see results of both algorithms running in the same problem
composition. We can notice that although supervised learning algorithm had slower

173

Table 2. Experiment parameters

Parameter Value

T 2

ty 0 1

Sty 40 45

Uty 25 30

Aty 3 3

T Sampled from uniform distribution U (0, 60)
fi dt —t

. Sampled from uniform distribution U(0,1) with
Machines health 0,05 probability to break

d; Sampled from uniform distribution U(15,25)

Min order size 1 3

Max order size 1 3

Time span between

. 5 turns
learning

Supervised learning

algorithm J48 (C4.5)

Reinforcement learning

algorithm Watkins

start it took the lead before end of experiment. Although rough start it managed to
stabilize and even decrease number of products waiting in buffers, where reinforce-
ment learning struggled with that much harder. Slower start of supervised system
version was probably caused by lack of the knowledge at the start of the experiment.
Reinforcement learning performed better in that situation because it does not need as
much previous experience to work with as supervised learning. Situation has changed
when the supervised algorithm gathered enough entries in the training set and greatly
improved it’s performance.

While reward optimization was not a goal of learning, we also made statistics
of reward collected by both solutions. Results achieved for 2x2 configuration are
presented on figure 4b. Since supervised learning gathers knowledge slower it’s also
starting to gain profits later. Despite rough start, our approach manages to leverage
it’s experience and start to achieve profits equal to those gathered by reinforcement
learning.

4.2, Comparison in a 3x3x3 System

Second experiment was conducted in model with 3 layers where each of them con-
tained 3 machines. This case allows to test algorithms capabilities in more complex
environment, although we have to remember that even the simplest examples from

174

real manufacturing will probably be much more complicated than this one. Received
results are presented in figure 5a. Both methods performed better than in previous
example. Reinforcement learning managed to stabilize quickly and keep the number
of products in buffers on almost the same level for the whole simulation. Supervised
learning like before had problems on the beginning. However, around turn 200 it
had break through and managed to decrease the number of products waiting for pro-
cessing to just a few. With such performance it is maintaining an advantage over
reinforcement learning to the end of the simulation.

In figure 5b we can see rewards achieved by learning algorithms during experiment.
As we can see even without maximizing received rewards, both algorithms managed to
work out profits. Reinforcement learning again achieved better results on this chart.
It’s due to the fact that it has been evenly working for the whole time. Supervised
algorithms despite of having almost empty buffers in second half of the algorithm
didn’t manage to catch up. Although in later stages of experiment profit gain of both
algorithms was equal, penalties for the first few orders put supervised learning too
much behind.

80 ! ! ! - 6000 - - :
Reinforcement learning Supervised learning

Supervised learning 5000 Reinforcement learning —= 1
60 - i hi

,me M‘J‘N m 4000 - e
,M . N RN

H M’fd 1 3000 - ’ /
\’n “JM"WW 2000 P /
“ Mfw"h | 1000 ;"r/‘
“\ww me\ﬂ“\ Lha b Antrg, b 0 Jr:/f’“‘/‘/ .

1 L
400 600 800 1000 0 200 400 600 800 1000

Buffers
Rewards

Turn number Turn number

(a) (b)

Figure 5. Results for 3x3x3 configuration

5. State of the art

Since machine scheduling problem is one of the most crucial ones for today’s manu-
facturing it has gathered a lot of attention in the recent years. As a result of this, vast
diversity of algorithms aiming to optimize the whole process has emerged. Solutions
based on various approaches included among others mixed-integer programming pre-
sented in [7] to solve flowshop problem using two criterias, makespan and flow-time.
Genetic algorithm approach was considered to solve n-jobs, m-machines setup. Re-
sults of this try compared with simulated annealing and neightbourhood search were
presented in [8].

There are several works considering reinforcement learning with Q-learning in par-
ticular as a possible solution to machine scheduling problem. Amongst them usually
multi-agent approach, where each machine serves as agent, is proposed as possible

175

solution. In [9] author employed multi-agent reinforcement learning for job shop
problem in a real life enviroment. It brings good results but operates on small action
space containig just 3 elements. Another work which employs reinforcement learning
is [4] where centralized version of reinforcement learning approach is proposed for
scheduling in online flow-shop problem. This solution despite taking longer time for
single step evaluation, converges faster than multi-agent variation. There are less
works considering supervised learning as solution. In [10] framework trying to learn
rules corresponding with creation of optimal solution is introduced. In [11] support
version machines (SVM) algorithm was used to solve resource constraint scheduling
problem which is generalization of flow-shop problem considered by us.

Unfortunately, since labelling cost is high as it needs a lot of time from the experts
and not always is even possible to be done, standard approach of supervised learning
doesn’t fit on-line version of scheduling problem too well. In reactive environments
where there is no previously defined training set, most of algorithms are unable to
learn. Luckily, proposed architecture allows agents to apply supervised learning au-
tonomously and on-line, so they can tackle such problems too.

6. Conclusion

In this paper we have proposed a multi-agent solution for a dynamic flow-shop version.
Agents apply autonomously supervised learning on line. Every agent collects experi-
ence which forms training data used to learn a classifier applied to chose what type of
product should be processed on every machine. Later on experiments were conducted
in which presented approach was tested against multi-agent reinforcement learning
solution. The goal of the agents was to decrease number of products in buffers. As
we can conclude after experiments, supervised learning outperformed reinforcement
learning in terms of the assumed goal. Although it needed more time to take a grasp
and converge with time it’s getting better and better. It stabilizes earlier and can
even decrease the number of product waiting in buffers where reinforcement learning
was unable to do so in tested scenarios. What it means is that supervised learning is
viable solution for dynamic problems if the right architecture is used.

Further research can focus on various directions. One direction is to try to employ
presented approach using single-agent system instead of multi-agent one used in this
thesis. Second way to go is to introduce some form of communication between agents,
to enhance received result even further. The last direction is to use this approach in
different problems with dynamic nature and see if it’s gathering as good results as in
this one.

176

Acknowledgements

The research presented in this paper was supported by the Polish Ministry of Sci-
ence and Higher Education under AGH University of Science and Technology Grant
11.11.230.124.

[1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

References

Sendil Kumar, C., Panneerselvam, R., Literature review of jit-kanban system.
The International Journal of Advanced Manufacturing Technology, 2007, 32(3),
pp. 393-408.

Olhager, J., Ostlund, B., An integrated push-pull manufacturing strategy. Euro-
pean Journal of Operational Research, 1990, 45(2), pp. 135-142.

Ouelhadj, D., Petrovic, S., A survey of dynamic scheduling in manufacturing
systems. Journal of Scheduling, 2008, 12(4), pp. 417.

Qu, S., Chu, T., Wang, J., Leckie, J.O., Jian, W., A centralized reinforcement
learning approach for proactive scheduling in manufacturing. In: ETFA, IEEE,
2015, pp. 1-8.

Sniezynski, B., Agent strateqy generation by rule induction. Computing and
Informatics, 2013, 32(5).

Sniezytiski, B., A strategy learning model for autonomous agents based on clas-
sification. International Journal of Applied Mathematics and Computer Science,
2015, 35(3), pp. 471-482.

Selen, W.J., Hott, D.D.,; A mized-integer goal-programming formulation of the
standard flow-shop scheduling problem. Journal of the Operational Research So-
ciety, 1986, pp. 1121-1128.

Reeves, C.R., A genetic algorithm for flowshop sequencing. Computers & oper-
ations research, 1995, 22(1), pp. 5-13.

Beke, T., Multi-agent reinforcement, learning in a flexible job shop environment:
the vest case. Master’s thesis, Gent Universiteit, Gent, Belgium 2013.

Ingimundardottir, H., Runarsson, T.P., Supervised learning linear priority dis-
patch rules for job-shop scheduling. In: Learning and Intelligent Optimization:
5th International Conference. Springer 2011 pp. 263-277.

Gersmann, K., Hammer, B., Improving iterative repair strategies for scheduling
with the {SVM}. Neurocomputing, 2005, 63, pp. 271 — 292 New Aspects in
Neurocomputing: 11th European Symposium on Artificial Neural Networks.

Schedae Informaticae Vol. 25 (2016): 177-188

doi: 10.4467/2083847651.16.014.6195 t | | I 2017
theoretical foundations |
of machine learning, Krakow

Portfolio Inputs Selection from Imprecise Training Data

SARUNAS RAUDYS!, Aistis RAUDYS!, ZIDRINA PABARSKAITE!,
GENE BIZIULEVICIENE!?
!Department of Mathematics and Informatics, Vilnius University
Didlaukio 47, 08303, Vilnius, Lithuania
e-mail: sarunas.raudys@mif.vu.lt
2State Research Institute Centre for Innovative Medicine
Zygimantu 9, 01102, Vilnius, Lithuania

Abstract. This paper explores very acute problem of portfolio secondary over-
fitting. We examined the financial portfolio inputs random selection optimiza-
tion model and derived the equation to calculate the mean Sharpe ratio in de-
pendence of the number of portfolio inputs, the sample size L used to estimate
Sharpe ratios of each particular subset of inputs and the number of times the
portfolio inputs were generated randomly. It was demonstrated that with the
increase in portfolio complexity, and complexity of optimization procedure we
can observe the over-fitting phenomena. Theoretically based conclusions were
confirmed by experiments with artificial and real world 60,000-dimensional 12
years financial data.

Keywords: Complexity, financial portfolio, overfitting, sample size, variable
selection

1. Introduction.

Data mining methods are slowly making their way into finance, where trading is
mainly dominated by econometric and statistical models. The same is with financial
portfolio construction. Markowitz mean variance portfolio optimization was proposed

Received: 11 December 2016 / Accepted: 30 December 2016

178

many years ago and many practitioners still use it in original form to create (learn
from data) optimal portfolios [1, 2]. Mean variance portfolio optimization (MVO) is
typically used to construct portfolios from various investments. For example, how
much stocks bonds and real estate one needs to have in its portfolio to achieve best
risk reward ratio? The quality of the portfolio is typically measured by the Sharpe
ratio (Sh) [2]. This ratio is a mean of the profits divided by the variance (stan-
dard deviation). It constitutes how much you earned and with what risk. Very few
investigate nonlinear methods offered by machine learning community.

The MVO works with any time series of profit and loses (PNL). So people use it
with artificial investments such as generated by automated trading systems. Auto-
mated trading is known as algorithmic trading, systematic trading and other names.
It is the process where human puts his investments knowledge into the computer
program and allows the program to make buy and sell decisions automatically. It
varies by types, trading frequency and strategies that are used. The trading firms
can employ many potential trading systems. Each trading strategy (T'S) can be run
in simulated mode and out of this simulation is the series of PNLs. These series
correspond to the success of the trading systems to generate profits. The question is
what algorithms to trade together to maximize profitability and minimize the risk.
Such time series can be used by the MVO engine to calculate the best portfolio best
set of trading strategies. Numerous factors influence this process.

Complex portfolio design rules having too large number of inputs for relative
short learning sequences often lead to overfitting. It is very easy to get good results
in simulations with training data, but notoriously difficult on the unseen data. Main
factors that are affecting the overfitting are: the training set size, a number of portfolio
inputs, inexact estimation of means values and correlations of the returns [3]. In view
of that, it is also very important to verify strategies in out of sample manner and
select such methods that will work well on the unseen data.

In present-day tasks we face extremely large number (say, N = 60,000) of trading
strategies and need to construct an investment portfolio for trading during short
future time interval. Obviously, we cannot include all N systems into the portfolio.
Therefore, we are obliged to choose much smaller subset of the best systems and use
simpler portfolio design methods [3]. The simplest portfolio is an equal weighted rule
where one weights all selected investments equally. This non-trainable portfolio is
called, 1/N, or Naive portfolio. Often it outperforms more sophisticated methods
[4, 5].

Machine learning has numerous methods that allow to deal with imprecise data
and to perform feature selection or extraction. Many methods select the “best” subset
of Ny (N, < N) trading strategies (TS) are suggested in the literature [6, 7].

The simplest way to generate N, - dimensional subset is to sort N trading strate-
gies according to sample estimates of the Sharpe ratio, Sh. In this approach, one
selects Ny, of them having the highest Sh values (method A). Sadly, this method ig-
nores correlations. Sophisticated way of the best subset selection is forward selection
Comgen procedure [8] that takes into account the correlations (method B). It makes
series of locally optimal solutions and hopes that it will lead to a near global optimum
solution. The benefit of this system is in its simplicity and granularity, as it virtually
creates integer portfolio weights (0,1,2,...) that can be traded straight away.

An important alternative is a random selection (method C) where one generates

179

m independent random subsets composed of N, TSs. One es/t\imates Sharpe ratios of
m subsets, and selects the best subset having the highest Sh value. An advantage
of this method is a possibility to analyze the accuracy of the best selection procedure
theoretically. Moreover, this way allows taking into account the correlations and
frequently leads to selection of good subset.

Analysis of diverse portfolio design schemas suggested by multiple authors showed
that majority of them does not hold out-of-sample scheme [9]. To obtain reliable
results, in selection of the best input subset or the portfolio design strategy one needs
to use independent validation data set. Due to finite size, the validation data is also
imprecise. Hence, selection of the TSs subset is inexact. In such circumstances, use
of more complex selection algorithm or an increase in the size of the TSs subset, Ny,
often does not lead towards the desirable result. It is worth noting that typical MVO
assumes that correlation, variance and profitability of the time series will remain
constant. Notoriously it changes and changes a lot. Therefore, in the portfolio input
and design scheme selection we face notable adaptation to validation set (secondary
overfitting).

To our knowledge the secondary overfitting effect was never considered in the
portfolio design literature. An objective of the present paper is analytic, numeri-
cal and experimental clarification of reasons of this important for the practitioner
phenomenon and choosing for research directions allowing to overcome this difficulty.

2. Theoretical analysis of accuracy.

An objective of the present section is to obtain an analytical formula to calculate a
mean value of true Sharpe ratio when random selection procedure C' is used to learn
(find) the “best subset” of TSs. To examine the accuracy, one needs to define a distri-
bution density function of true Sharpe ratio values f;(Sh), and conditional density of

estimates, f (g’ﬁ | Sh) To simplify theory and numerical analysis, we assume true

values Sh, and estimates, Sh can take only discrete values, Shi, Sha,...,Sha, and
S’hl, Shg, .. ShB If numbers A and B are sufficiently large, this slmphﬁcatlon is
not restrlctlve. Let the elements of both vectors are ranked in an increasing way. In

the discrete model, instead of probability densities f; (Sh), and f. (5’71 | Sh), we deal
with probabilities of discrete values

Ptrue (Sh:Shi):Ptruei7 (i:1u27”'7A)7 (1)

Pcond(@:ﬁjwh:sm) — P9, (i=1,2,...,Aj=12....B), (2)

where P stands for the probability.

180

To investigate relations between the sample size and accuracy analytically, we need
to choose models Pirye(Sh = Sh;) and Peong (gﬁ — S’ | Sh = Shi). To calculate

the mean Sharpe ratio, F (Sh), we need to derive two expressions:
1. conditional probabilities Prong (§7L — 5K | Sh= Sh,») and

2. probabilities of the maximal values of m estimates §7L1,;§7L2,...,§7Lm (here
subscript indicates a serial number the of Nj - dimensional subset of T'Ss’).

Note, each estimate, g’?zl, can get any of B values defined in Eq. 2.

Without loosing generality, we normalize values of Sh and Sh to have them varying
in interval [0, 1]. According to the theory of probabilities, a joint probability of two

dimensional vector (Sh, Sh)

Pioint (Sh =Sk, Sh = Shi) = P x Puyuei = P, (3)

Then unconditional probability

. A)
Pucond(gﬁ = §71J) = Z(Picj (Sh = Sh]v Sh = Shz) X Pirye (Sh = Shz) =

= B (4)

> (PY™ X Piruer) = Pl

i=1
Subsequently, conditional probabilities can be expressed as
Pjoint (5715 = 571], Sh; = Shi)

Peona (Shi = Shi | §h=5h) = ——— =P ()
Pucond(Shl = Sh)

2

where the subscript index [means ”any of 1,2,...,m”.
According to definition of the maximal values their probabilities can be expressed as

Peond (gﬁmaiimal = 571]) =P (5‘711 < @jﬂ, 3712 < §7Lj+1, ---75/%17@ - §;Lj+1> -

P(§7L1<§7LJ,§7LQ<§;LJ,...,§7Lm<§ﬁj).

In the random search selection, the probabilities S/’ﬁh 5712, ey §Lm are indepen-
dent. Thus,
— /\] o~ /\j+1 m - /\j m
P (Shmmml —3Sh) —p (Shl < Sh) e (Shl < Sh) (6)

where P (57” < §L]> = Z?;ll P

181

As a result

. . m 1 m
P (gﬁmamimal = ﬁ]) = (i P1l1,c> - (JZ ij) (7)
=1 =1

Then the mean value of the expected Sharpe ratio after the random selection
procedure, E(Sh), can be calculated from Equations (5) and (7)

A B . .
E(Sh) =S Shi x 3 Peona (Shl — Shy|Shy = @]) x P (@mm - @j) =

- . S o ®
> Shix Y Pl x ((Z Pg‘c> - (Z ch>)
i=1 j=1 =1 =1

3. Numerical analysis of the two-dimensional Beta distribution model

Eq. (8) does not allow seeing a relationship between the decreasing of the Sharpe
ratio due inexact selection of the best subset of trading strategies in an explicit way.
It can be done numerically. To see the relationship of F(Sh) and wvalidation set size,
L, the portfolio inputs selection algorithms complexity parameters, m, N, Ny, and sets
Piuei, P77 (1 = 1,2,...,A;5 = 1,2,..., B) one needs to define them. A simple way
to fulfill this requirement is to assume values Pyye, (1 = 1,2,..., A) to be calculated
from Beta density

Piruei,=vSh®(1 — Sh)? (9)

where o and (3 are shape parameters and coefficient -y is chosen from requirement
Zle Sh; = 1. By simple scaling of two extra parameters the Sharpe ratio value can
be made to vary in an arbitrary interval. Then we would have a generalized Beta
distribution.)

We assume conditional probabilities P.,.q (571 — 5K’ | Sh =S8 hi) are defined by

Beta distribution with parameters 7., a. and S.. In numerical analysis we define
values of a. and . according to mean = Sh; and variance = Vy/L of the Beta
distribution density (9)

e = Shi(Sh;(1 — Shy)L/Vy — 1), B. = a.(Sh;* — 1) (10)

where parameter L symbolizes the validation set size used to obtain estimates §7Ll
and parameter V[symbolizes the variance when L = 1;

Below we will examine an example with o = 18.218, § = 160.968, V5 = 0.006,
A= B =1,000 and L = 42 (number 42 symbolizes two months validation days used
to estimate Sharpe ratio in automated financial trading). These values were chosen

182

0.25 b

<}

N
:
|

True Values of the Sharpe
o 2
[(8]

)
&
>(.
|

0 0.1 0.2 0.3 0.4 0.5
Estimates of the Sharpe ratio

Figure 1. Schema of Two-D Beta distribution density.

while analyzing real world financial data with 50,356 trading strategies. In Figure 1
we present 2-D visualization of distribution of probability Pjoint(ﬁ = §LJ7 Sh = Shy)

in variables Sh (z axis) and Sh (y axis) space. We see the smallest Sharpe values
(painted in black, here we have the highest Pfjomt values) are much more correlated

as the largest 571, Sh values (painted in bright gray, here we have the smallest Pf;’mt
values). Inspection of Figure 1 shows that an increase in the number of m random
subsets TSs (entering the rights part of the gray area marked by “*”) allows finding
subsets characterized by high validation set based Sharpe values. The test estimates
(Sh), however, are low in this area.

Calculations according to Eq. 8 confirm the conclusion made from visual analysis
of Figure 1. Graphs for L = 21, 42 and 63 presented in Figure 2 indicate: 1) with
lager value of validation set size, L, we obtain higher true Sharpe values, Sh, 2) the
means of Sh are increasing with m at the very beginning, then saturate, and later
start decreasing. Thus, training performed by random selection procedure confirms
overtraining (peaking) effect known in the data mining and machine learning research
[10]. The peaking effect appears earlier when validation set size, L, is small (inspect
a curve marked by 21 in Figure 1). When L is extremely small, then Sh and Sh
become almost uncorrelated. Then peaking starts almost immediately. Contrary, for
larger L values the peaking occurs later and is less expressed (see curve for L = 64 in
Figure 2).

Note, parameter m characterizes a complexity of the model selection procedure.
Thus, speaking in general, the theory and graphs in Figure 2 explain peaking rela-
tionship between accuracy and complexity of learning portfolio inputs selection algo-
rithm.

183

0.13
0.12
0.11

0.1

0.09

0 200 400 600 800 1000
A number of the best subsets in random selection

Sharpe test: theory and simulation

Figure 2. Mean of true Sharpe ratio after the best subset selection.

4. Experiments with 60,314-dimensional financial data

Our analysis is aimed to understand the influence of complexity on the 1/N portfolio
design in real world financial trading when portfolio dimensionality is extremely high
and the size of the data to be used for training (the best T'Ss subset selection) is rela-
tively small. Therefore, for verification of conclusions presented above we performed
experiments with the real world automated trading data.

Trading algorithms comes in many varieties. In our particular case, from prop
trading firm we received series (60,314 — dimensions, years 2004 — 2016 data) of
the PNLs generated by mean reversion type of strategies. Mean reversion strategies
(MRS) are also known as contra trend strategies as they go against the trend. If
market is moving upwards at some point MRS can decide that it moved too much
and there will be a market correction. So algorithm will short sell and wait for
correction. The same is for opposite direction. If the market falls down too much
and/or too fast, then the MRS will buy with anticipation of some correction - at
least short market movement upwards. If market moves upwards the trading strategy
typically will sell and close the position with the profit. Sometimes, especially during
market tumor and panic such strategies can generate sharp losses as market moves
in one direction for extended period of time. Therefore, it is extremely important
such strategies to trade in the portfolio. The risk in portfolio is divided among many
strategies and quick loss in one of them makes only small loss in overall portfolio level.

Due to the presence of numerous economy and finance environments changes,

1
in our investigations we used two months data for validation (estimation Sh and
selection of m best TSs). Later two months data were used for testing the trading

184

algorithm, i.e. estimation of Sh!).

In real world trading with sudden environmental changes,/\vve have two sources
of errors that are affecting difference between evaluation of Sh and true Sh. The
first source is finite sizes of learning and validation segments of historical data. This
problem was considered in previous section. The second source is the data variation.
Investigation of contemporary financial time series showed that Sharpe ratios esti-
mated for two earlier and later two months length data segments are very weakly
correlated. Often correlations are even negative. In Figure 3 we present a “successful
example” with absence of visible correlation (242 months of 2016 spring data). Like
in the previous section we are interested in dependence of the mean Sh value on m.
Due to random generation the subsets of TSs, single Sh and Sh graphs are notably
scattered.

To reduce fluctuations we generated M = 5,0000,000 subsets composed of N, TSs
for each of them. Then for each subset we calculated the estimates Sh (two training
months were used) and the true values, Sh (again two extra months were used).
As a result, for further analysis we obtained 2 x 5,000,000 dimensional array of the
Sharpe ratio values. For each particular m value chosen from a priori fixed vector
mm = [50, 100, 200, . . ., 100,000] we used binomial coefficients to calculate true mean
Sharpe ratio, §7L(m), for all possible, M!/m!/(M —m)!, combinations. In Figure 4 we
present graphs of the mean values calculated for three TSs subset sizes, N, = 20,40
and 90.

For each of the TSs subset size, N, we observe peaking effect. Curves in Figure
4 remind the curves, presented in Figure 2 calculated for the 2-D Beta model. The
most obvious decrease in the performance of the TSs selected is observed for small
sizes of the subsets. Small training strategies subsets result smaller portfolio accuracy
and smaller correlations between the Sh and, Sh values. Therefore, the peaking effect
appears very early (curve for N;=20 in Figure 4). With reserved increase in Ny, the
portfolio performance increases (curve for N;=40 in Figure 4). Notable increase in
size of the TSs, m, increases the complexity of the optimization algorithm. In such
a case, we obtain overtraining (overfitting) effect once more: for N,=90 the true
Sharpe ratio graph is notably below as that for N,=40. This result confirms: too
great increase in complexities of the T'Ss subset size, Ny, and in the algorithm used
to select the best subset, m, causes a negative effect. Figure 4 illustrates that for
successful employment of the random search procedure (N=40, m = 400,000) an
average of the true (validation set estimates) the Sharpe ratio values obtained for
these optimization procedures parameters, Shpes;=3.72, (see Figure 4). It is notably
higher value as average of Sh, (r =1,2,...,5,000,000). For practical application one
needs to know optimal values of the optimization procedure parameters (Ny, m, L).
Studies in this direction have already begun.

The peaking effect had been noticed in statistical, pattern recognition, data visu-
alization, design of prediction rules, neural networks [10, 11, 12, 13]. We expect that
this conclusion can be applicable also for other research and development disciplines
where data mining and machine learning are used. Therefore, in dynamic Portfolio de-
sign, we need to pay attention both into development of faster optimization methods
and ways to determine the optimal complexity of the optimization algorithms.

In the introduction we mentioned two heuristically based algorithms, the indepen-
dent training strategy selection (A) and the feed forward selection algorithm Comgen

185

Sharpe ratio after the.best~subsét,selection,
rm=500,000 ., .: st T i

4 et
R ~
s 3 .
>

2 -

1t . mean

value
10 12 14 16

X axis

Figure 3. 2-Dscatter of Sharpe training and test Sharpe ratios calculated for
M=100,000 subsets.

2

3]

<@

]

7]

B o
1]]
o

=]

(7] L
3

% 3 1
2

I

o 25 1
2

% 20

o 2T 1
E=)

©

% 15 1 1 1 1 1

% 0 0.5 1 1.5 2 2.5 3

TSs subsets in random selection <108

Figure 4. The Sharpe ratio after the random best subset selection.

186

3.5
0
g
I I
g
17
L 25
D
(/2]
B 27
g
— Independent
5 15 P]
il
8 1 1
o
e
c 051]
=
%)

50 100 150 200 250 300 350
Dimesnsionality of subsets

Figure 5. Sharpe ratio of the best T'Ss where trading systems were ranked individ-
ually or selected by the Comgen algorithm.

(B). In comparison with random search they work much faster. Their complexity can
be characterized by the number of TSs selected, N,. In Figure 5 we present variation
of the test set Sharpe ratio in dependence of dimensionality of the TSs selected. The
dependency curves are much more scattered as that irl\ Figure 4, since only short, two
month length data sequences were used to calculate Sh and Sh.

Both graphs in Figure 5 exhibit the peaking behavior. For both algorithms the
optimal complexity of the Portfolio inputs is found somewhere in the range 200 — 250
trading strategies. The true Sharpe ratios detected are a bit lower as that obtained by
relatively slow random search procedure. In the practical automated daily investment
work the random search (algorithm C) can be easily applied since modern laptop
computers calculate the family of curves similar to that in Figure 4 in 10 - 20 minutes.

5. Concluding remarks

This paper explores the secondary over-fitting effect that is very acute of 1/N portfolio
design. It is an adaptation to validation data set used to select the best subset of
inputs and/or the best algorithm to calculate the portfolio weights. Ignoring this
up to now unexplored effect constitutes a big headache for portfolio managers as
constructed portfolios do not behave in the way they were supposed to. In theoretical
analysis we examined the random portfolio inputs optimization procedure and derived
the equation to calculate the mean Sharpe ratio in dependence of (on) the number
of portfolio inputs N, the validation sample size L used to estimate Sharpe ratios

187

of each particular subset of inputs and the number, m, of randomly generated Nj-
dimensional portfolio inputs from their N-dimensional set. This equation was adapted
for practical calculations of the mean Sharpe ratio when both, the probabilities of the
true and estimate Sharpe ratios, are calculated from the 2-D Beta distribution model.
It was demonstrated that with an increase of portfolio complexity, IV, and complexity
of optimization procedure, m, we can observe the over-fitting phenomenon.

Theoretically based conclusions were confirmed by experiments with high dimen-
sional real world financial data and suggest several recommendations for future re-
search and practical work. Due to the presence of numerous economy and finance
environmental changes the 2-D scatters of Sharpe ration evaluated on training and
validation data in diverse time periods often show zero or even negative correlations.
Consequently, the practitioner should be careful: sometimes even a negligible opti-
mization of the portfolio inputs subset can worsen the result. For that reason the
practitioner should examine numerous subsequent in time 2-D Sharpe ratio scatters
and be cautious with for the portfolio inputs optimization. Therefore a prudent analy-
sis of changes in preceding historical data is very important. Preliminary experiments
demonstrated that paying an attention to validation data size and knowledge about
character of possible data changes could lead to novel useful ways of the portfolio
management and determination of the portfolio size and parameters of optimization
rules.

Acknowledgements

This work was supported by the Research Council of Lithuania (grant MIP-100/2015)

6. References

[1] Markowitz, H.M., Foundations of portfolio theory. The journal of finance, 1991,
46(2), pp. 469-477.

[2] Reilly, F.K., Brown, K.C., Investment analysis and portfolio management. Cen-
gage Learning, 2011.

[3] Raudys, S., Portfolio of automated trading systems: Complezity and learning set
size issues. IEEE transactions on neural networks and learning systems, 2013,
24(3), pp. 448-459.

[4] DeMiguel, V., Garlappi, L., Uppal, R., Optimal versus naive diversification: How
inefficient is the 1/n portfolio strategy? Review of Financial Studies, 2009, 22(5),
pp. 1915-1953.

188

[5]

[12]

[13]

Haley, M.R., Shortfall minimization and the naive (1/n) portfolio: an out-of-
sample comparison. Applied Economics Letters, 2015, pp. 1-4.

Guyon, 1., Elisseeff, A., An introduction to variable and feature selection. Journal
of machine learning research, 2003, 3(Mar), pp. 1157-1182.

John G H, Kohavi R, P.K., Irrelevant features and the subset selection problem.
The journal of finance, 1994, pp. 121-129.

Raudys, A., Pabarskaite, Z., Discrete portfolio optimisation for large scale
systematic trading applications. In: Biomedical Engineering and Informatics
(BMEI), 2012 5th International Conference on, IEEE, 2012, pp. 1566—1570.

Bailey, D.H., Borwein, J.M., de Prado, M.L., Zhu, Q.J., Pseudomathematics
and financial charlatanism: The effects of backtest over fitting on out-of-sample
performance. Notices of the AMS, 2014, 61(5), pp. 458-471.

Bradley, P.S., Fayyad, U.M., Mangasarian, O.L., Mathematical programming for
data mining: Formulations and challenges. INFORMS Journal on Computing,
1999, 11(3), pp. 217-238.

Jackowski, K., Wozniak, M., Algorithm of designing compound recognition system
on the basis of combining classifiers with simultaneous splitting feature space into
competence areas. Pattern Analysis and Applications, 2009, 12(4), pp. 415-425.

Tetko, I.V., Livingstone, D.J., Luik, A.L., Neural network studies. 1. comparison
of overfitting and overtraining. Journal of chemical information and computer
sciences, 1995, 35(5), pp. 826-833.

Raudys, S., FExperts’ boasting in trainable fusion rules. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2003, 25(9), pp. 1178-1182.

Schedae Informaticae Vol. 25 (2016): 189-207

doi: 10.4467/2083847651.16.015.6196 t I I l 2017
theoretical foundations
of machine learning, Krakéw

Search for Resolution Invariant Wavelet Features of
Melanoma Learned by a Limited ANN Classifier

GRZEGORZ SUROWKA
Faculty of Physics, Astronomy and Applied Computer Science,
Jagiellonian University, 30-151 Krakéw, Poland
Institute of Technology, State Higher Vocational School, 33-300 Nowy Sacz, Poland
e-mail: grzegorz.surowka@gmail.com

Abstract. This article addresses the Computer Aided Diagnosis (CAD) of
melanoma pigmented skin cancer. We present back-propagated Artificial Neu-
ral Network (ANN) classifiers discriminating dermoscopic skin lesion images into
two classes: malignant melanoma and dysplastic nevus. Features used for our
classification experiments are derived from wavelet decomposition coefficients
of the image. Our research objective is i) to select the most efficient topol-
ogy of the hidden layers and the network learning algorithm for full-size and
downgraded image resolutions and, ii) to search for resolution-invariant topolo-
gies and learning methods. The analyzed classifiers should be fit to work on
ARM-based hand-held devices, hence we take into account only limited learning
setups.

Keywords: melanoma, CAD, wavelets, ANN

1. Introduction

Computer aided classification of the benign form (displastic nevus) and the malignant
form (melanoma) of the pigmented skin lesions plays a crucial role in the prevention
of human melanoma. Melanoma, as contrasted with the other forms of skin cancer,
is extremely dangerous due to early metastases. Early diagnosis of this tumor is a
life-saving factor. Lack of specialists, too late detections and an increased melanoma

Received: 11 December 2016 / Accepted: 30 December 2016

190

morbidity rate have become a medical problem for some time and, on that account,
a challange for computer assisted diagnosis (CAD) [1, 2, 3]. The standard therapy,
biopsy, is not feasible for all the patients due to treatment costs and some health
reasons. Even if affordable, excision must be done at an early stage, when standard
clinical diagnosis based on the ABCD criteria may fail [4]. For that reason, analysis
of skin lesions images have become a useful diagnostic tool. The most popular and
cheapest form of lesion screening is dermoscopy (ELM-Epiluminescence Microscopy)
[5]. This technique uses optics and white light illumination of the lesion and stores
the skin image usually on a computer. This is extremely useful for comparing past
and current advances of the lesion. Some advanced instruments can illuminate the
lesion at different angles or with a set of different wavelengths. This helps penetrate
deeper layers of the skin to reveal its spatial structure [6, 7, 8]. Their coverage is
however limited and the most common are the cheapest, handy dermatoscopes.

Stages of pigment cells atypia are recognized by medical doctors with help of the
semi-quantitative descriptive measures: ABCD(E), the 7-Point Checklist, Menzies
and other less common [9]. Clinical diagnosis of Melanoma depends on the appearance
of classic dermoscopic features but unfortunately the so called early melanomas are
mainly featureless [10].

The computer aided melanoma diagnosis is roughly divided into two classes of
methods:

e Segmentation-based methods: they assume that melanoma can be visually ex-
amined based on shape, color and structure content. There are two main reasons
why those methods may fail:

— different illumination and optical magnification plus noise and artefacts
(hair, blistery areas) can make such observations/analyzes not sensitive
enough [11],

— search for featureless melanomas is infeasible.

e Texture-based methods (wavelet- or curvelet- based): they attempt to search
for some frequency and scale information of the skin texture [12] to distinguish
between benign and malignant skin progression [13, 14]. The related works
referenced in this article (Sec.2) prove that especially wavelet-based methods
are robust and show high performance in the melanoma classification.

There exists a big market for (para)medical smartphone applications. Both med-
ical doctors, who are interested in medical decision-supporting tools, and plain con-
sumers, who want to quickly ’self-diagnose’ and be aware of personal health issues,
show interest. The self-examination/self-diagnosing optical extensions and grip pan-
els for mobile phones are very popular. There is also a growing market for handy
dermatoscope-like devices with optics and ARM-based processors for a 'mobile’ CAD
and melanoma diagnosis [15, 16].

Since the developed machine learning and image recognition and interpretation
algorithms may demonstrate high complexity and small handheld devices have limited
processing power and memory, it is of great importance to search for methods that
analyze optimally both full-size dermoscopic images and preserve high efficiency also
in downgraded image resolutions.

191

In Sec. 2 research on wavelet based features and methods is presented. One
conclusion of the latest advances [17] is that different wavelet families perform not
equally in terms of the melanoma classification efficiency. The reverse bi-orthogonal
(RBio) and bi-orthogonal (Bior) wavelets prove to be the most efficient, robust, and
resolution invariant wavelet families for the machine learning of dermoscopic images.
In [17] ensemble learning of different model types and optimized for various quality
measures is performed for the wavelet features. In this work we want to check ef-
ficiency and classification performance of a single, homogeneous model taking into
account the most successful wavelet families concluded in [17]. We pick the RBio3.1
wavelet base and study back-propagated artificial neural network (ANN) classifiers of
the melanoma (RBio3.1)-based features with limited topologies for the hidden layers
to take into account execution platforms with limited processing resources.

Within these bounds our objectives are:

e to select the best NN topology and learning method in terms of absolute melanoma
classification performance upon condition of efficient cost/time of ANN back-
propagation learning for three different resolutions of the dermoscopic images,

e to search for a resolution-invariant model of ANN for the original clinical data
and the descendant downgraded image resolutions.

Below we review previous research on both wavelet-based features of melanoma and
NN-based melanoma classifiers. Then we show methodology of our machine learning
experiments and present and discus the results.

2. Related work

The first contribution to wavelet based decomposition of melanoma dermoscopy im-
ages belongs to Patwardhan et al. [18, 19]. This group successfully studied binary clas-
sification models for benign nevus and melanoma by decomposing different frequency
scales of the skin texture (wavelet packets). This approach also known as selective
wavelet trees in each iteration decomposes all the sub-bands of the pigmented skin
texture rather than the low-frequency sub-band only (recursive algorithm). Since that
time the wavelet-based features have also been successfully studied by other groups
[20, 21, 22, 23, 24, 25, 26, 27, 28]. The binary classifiers from Patwardhan [18, 19], and
early contributions from [20, 21, 22], were using only one wavelet base (Daubechies
3) to build classification models. Recent research on efficiency of different wavelet
bases in classification of melanoma and benign dermoscopy images shows that bi- and
reverse bi-orthogonal wavelets outperform other wavelet families. In this article we
use the reverse bi-orthogonal wavelet 3.1 (RBio3.1) as the transform base.

Neural learning of wavelet-based features at various stages of melanoma develop-
ment was first studied by Walvick et al. [13]. Their feature set was then optimized
by removing redundancies with help of principal component analysis. A feed for-
ward neural network trained with the back propagation algorithm was then used in
the classification process to obtain better classification results. In [29] a two level
wavelet transform was performed on the segmented image in order to take into ac-
count only the lesion region and not the surrounding tissue. In order to maintain the

192

original image size, a stationary wavelet transformation was used which suppresses
down-sampling, producing a wavelet matrix of the same size as the input image. For
the approximations and details components mean and variance of wavelet coefficients
were calculated and normalized (0,1). Three wavelets from four different families
(Daubechies, Coiflet, BiorSplines, Symlet) were tested to see the impact on the clas-
sification. The feed forward back propagation neural network consisted of 8 input
nodes (for 8 features), 2-5 hidden nodes and one output node and was trained/tested
by the LOO technique. The overall classification accuracy was about 83%-86% for all
the wavelet bases for the best performing network with 3 hidden nodes.

Also [24] employed the variance and mean of wavelet decomposition coefficients
to extract useful features of dermoscopy images. Those coefficients were used as the
inputs of neural network. Results showed 90% ability in distinction between benign
and malignant lesions.

Work [30] segmented suspicious lesions from the normal skin and extracted features
that distinguish malignant melanomas from benign moles with 2D wavelet transform
in Matlab. Some selected features formed the input to an ANN classifier. Authors
claim accuracy to be 84% but no details about the procedures are available.

An interesting research was done in [31]. This paper proposes a melanoma classi-
fication system based on coefficients created by wavelet and curvelet decompositions.
The curvelet transform returned the set of curvelet coefficients indexed by scale,
orientation and location parameters. Fast Discrete Curvelet Transform via wedge
wrapping was used to find the features. Recognition accuracy of the three layers (40-
25-10) back-propagation neural network classifier with wavelets was 51.1%, which is
a surpisingly low value, and with curvelets 75.6%, not high neither.

Good indication for lesion malignancy is border irregularity. Work [32] presented
a contours harmonic wavelet coefficients forming a sequence of multi-scale roughness
descriptors to characterise the distribution of energy across contour’s line. The de-
scriptors for regular and irregular borders were compared with ground truth from
experts. Differentiating between benign and malignant lesions according to those
descriptors led to maximum classification accuracy of 93.3% with sensitivity of 80%.

Similar work was reported in [14] where wavelet decomposition was used to extract
energy distributions among different wavelet sub-bands. Statistical and geometric
irregularity descriptors based on the wavelet coefficients were used to model structural
components from the contour. The effectiveness of the descriptors was measured
using the Hausdorff distance between sets of data from melanoma and mole contours.
The best descriptor outputs were input to a back propagation neural network to
construct a combined classifier system. Experimental results showed that the selected
thirteen multi-scale features with small sample set produced the best discrimination
performance with AUC=0.89 and best specificity of 90%, and sensitivity of 83%.

Artificial neural networks (ANN) in general are widely used in various pattern
recognition problems, also in CAD. There are different types of neural systems well
suited to classify visual features from (medical) images. In this short review we list
only standard back-propagated neural networks (not e.g. CNN). In the melanoma
classification problem ANNs are used as one of the following:

e the main classification engine (melanoma-benign lesion) for all/selected features,

o dedicated expert system for a single segmentation task (e.g. edge detection), or

193

e auxiliary ML system for initial/post- analysis and verification.

First ANN classification of melanoma and benign lesions comes from [33] where
about 80% correct classifications were reported. The network topology (14-X-1, X-
hidden neurons) accepted two asymmetry- and twelve color-based features.

In [34] authors analyzed basic, shape and color features with different normaliza-
tion conditions and concluded that on both dichotomous and trichotomous tasks, the
ANNS s performed (sensitivity: 91%, specificity: 94% for 1619 lesion images) similarly
as logistic regression and SVMs, and better than k-nearest neighbors and decision
trees.

In [35] authors analyzed 48 parameters belonging to four categories: geometry,
color, texture, and color clusters inside the lesion and performed step-wise feature
selection to identify an optimal subset of 10 variables (starting from the most sig-
nificant: red multicomponent, decile of red, border homogeneity, mean value of red,
grey-blue areas, contrast, interruptions of the border, mean skin-lesion gradient, back-
ground regions imbalance, variance of the border gradient). The clinical /dermoscopic
equivalents of those variables are: multicomponent pattern/homogeneity, lesion dark-
ness, border cleanliness, mean color of the lesion, grey-blue areas, network analysis,
variation in the border cleanliness, grading of the border, color asymmetry, intensity
in the border interruptions. Distinguishing melanoma from benign lesions with these
optimal features gave the maximum sensitivity of 93% and specificity 92.75%.

Project DANAOS [36] aimed at analyzing robustness of the NN-based machine
learning system with respect to multi-population lesion samples. Its authors con-
cluded that the performance of their NN expert system is comparable with that of
clinicians, with the average AUC of 84,4%.

Rajab et al. [37] investigated the neural network edge detection (NNED) in the
iterative thresholding segmentation. They drew conclusions on the method perfor-
mance over a range of different border irregularity properties and signal-to-noise ratio.

Preprocessing of dermoscopic images through the Fourier and log-polar transforms
was used to build an unsupervised image segmentation and image registration system
where neural networks and discriminant analysis were used to find the best classifi-
cation rules for the extracted border- and color-based features [38].

[39] described a multi-layer perceptron classifier for melanoma recognition with
accuracy of 77.7%. The number of features for classification was optimised to only
five which speeds up the CPU time.

In [40] a service on the Internet was introduced to upload dermoscopy images for
on-line extraction of the tumor area and calculation of 428 global features (color,
symmetry, border, and texture ABCD) for the characterization of the lesion. The
extracted features classified the lesion as melanoma or nevus using a neural network
classifier achieving a sensitivity of 85.9% and a specificity of 86.0% on a set of 1258
dermoscopy images using cross-validation.

A co-operative neural network-based edge detection on enhanced colors and con-
trast of the image is reported in [41]. As supervisors (ground truths) three expert
dermatologists were used.

An automatic neural skin cancer classification system was developed in [42] for
dermoscopy imagess and optimized for different types of neural network topologies
and different preprocessing modes. The authors reported best recognition accuracy

194

of the 3-layers back-propagation neural network classifier as 89.9% and of the auto-
associative neural network as 80.8%. In the system some features were extracted
through 2-D wavelet packet decomposition under performance tests of seven different
wavelet bases (the best wavelet base was Bior5.5, and the most stable experimentally
Dbl or Db10). Some opimization was done to the number and structure of the hidden
layers. The best topology was reported for the three hidden layers with 40-25-10
neurons.

In [43] a back-propagation neural network (BPN) is used for segmentation. The
results are compared with the ground truth images which shows that BPN has slightly
worse segmentation accuracy and slower training period than Extreme Learning Ma-
chine (ELM).

[44] claims rather low accuracy of the melanoma discrimination with back propa-
gation neural network which yields 60%-75%. This outcome is outperformed by the
SVM models.

Group [45] segmented dermoscopic images using Maximum Entropy Threshold and
extracted features using Gray Level Co-occurrence Matrix (GLCM) for classification
into cancerous or non-cancerous cases using back-propagated neural networks (BPN).
The reported accuracy is 88%.

Paper [46] proposed the flow: feature extraction, dimensionality reduction and
classification to discriminate skin lesions into 'normal’ and ’abnormal’ skin cancer
classes. In the first stage authors used discrete wavelet transforms, in the second
stage PCA. In the classification stage a feed forward back-propagated artificial neu-
ral network and a k-nearest neighbor paradigmes were applied. Accuracy of those
experiments was: 95% (ANN) and 97.5% (kNN).

Discrimination between the six Menzies color classes in the calibrated RGB der-
moscopy images were studied in [47]. The JeffriesMatusita and transformed diver-
gence separability distances were used to evaluate the color class separability. A
nonlinear cluster transformation allowed almost the total separation of each color
class in the feature space. Several neural networks in competition were used as classi-
fiers. Classification achieved 93% of sensitivity, 62% of specificity and 74% of accuracy
(average). Authors claim that it might be possible to evaluate a lesion based on the
presence of Menzies colors in the dermoscopic image, mimicking the human diagnosis.

In [48] statistical features and dermoscopic features (ABCD: Asymmetry, Border,
Color and Diameter) for detection and diagnosis of melanoma were used. Segmen-
tation-based thresholding plus statistical feature extraction using GLCM were used
to calculate the Total Dermoscopy Score (TDS). The combined result of the TDS
parameter and a neural network classification yielded accuracy of 88% which was
claimed to be efficient for the skin cancer detection and diagnosis.

[49] presents a melanoma detection system working in two phases: the first phase
detects whether the skin lesion is of pigment type, the second phase distinguishes
between malignant melanoma and benign skin lesions. The reported classification
results from the neural network are about 98% (phase 1) and 93% (phase 2). Although
algorithms and methods are presented step-by-step some details cannot be derived.
The high results are controversial.

[50] analyzes the recognition performance of three different classifiers: support
vector machine (SVM), artificial neural network (one hidden layer, sigmoid transfer
function) and k-nearest neighbor. From experiments run on a database of more than

195

5000 dermoscopy images they concluded that the SVM approach outperforms the
other methods reaching an average recognition rate of 82.5% comparable with those
obtained by skilled clinicians. So this is an upper limit for average recognition rate
by neural network.

In [51] several methods of melanoma classification were proposed: a multilayered
perceptron, a Bayesian classifier and the K nearest neighbors algorithm. These meth-
ods worked independently and also in combination making a collaborative decision
support system. The performance factors obtained for seven neurons in a single hid-
den layer were: classification rate: 86.73%, sensitivity: 78.43%, specificity: 95.74%,
slightly less than in the collaborative method: classification rate: 87.76%, sensitivity:
78.43%, specificity: 97.87%.

In the review [52] authors surveyed computer-based systems according to acqui-
sition, feature definition, extraction and skin lesion classification. Authors concluded
that some widely used lesion parameters like lesion size, shape, color, and texture
do not correspond to known biological phenomena and the structural patterns that
are considered essential for manual lesion categorization are absent in the analysis
due to their complexity. From the analyzed machine learning methods (discriminant
analysis, neural networks, support vector machines) SVM performed the best. Neu-
ral Networks using two principal components as input produced 85% correct matches
(sensitivity 79%, specificity 90%) for the vertical growth phase of melanoma develop-
ment and 94% correct matches (sensitivity 86%, specificity 90%) for the radial growth
phase.

Using meta-analytical methods Authors of [53] compared the diagnostic accuracy
of the different dermoscopic algorithms with each other and with the artificial intelli-
gence methods for the detection of melanoma. They concluded that pooled sensitivity
for artificial intelligence was slightly higher than for dermoscopy (91% vs. 88%) and
pooled specificity for dermoscopy was significantly better than artificial intelligence
(86% vs. 79%). There was no significant difference in the diagnostic performance
of various dermoscopy algorithms (ABCD, 3-point checklist, 7-point checklist, Men-
zies score). A useful 1994-2006 summary for characteristics of the included studies is
included.

Authors of article [1] classified and researched literature on the CAD systems for
melanoma identification. They tabularized lots of references according to the generic
steps of CAD: image preprocessing, border detection, features/descriptors extraction
and classification. Low opinion was expressed on the lack of common standards and
absence of benchmark datasets for standardized algorithm evaluation.

In the review [2] the state of the art of melanoma CAD was examined: in-vivo
imaging techniques, image acquisition, pre-processing, segmentation methods, feature
extraction and selection, and classification of dermoscopic images. Of high value are
the indications of various conditions that affect the technique’s performance. The case
of artificial neural networks for the melanoma classification is broadly represented in
the following references.

Article [54] reviews to a lesser extent the 2011-2014 works in the skin cancer
detection. Classifier performance results from other existing melanoma CAD systems
can be found in [55].

The last review [3] gives a vast look at different feature types and classification
methods. It reports and classifies the 2007-2015 studies paying attention at refering

196

them to the global and local patterns.

3. Data and Methods

3.1. Data

The database collected for this study included anonymous images of the moles from
185 patients of one private clinic in Poland (the formal agreement forbits publications
of the location details to keep the patients data unidentified). The examinations were
performed with plain digital camera with an extra dermoscopy extension and immer-
sion liquid to remove light reflections. The primordial JPEG pixel resolution was
2272x1704 and the RGB color depth 24-bit. The resection and hist-pat examination
of the moles allowed to assign labels to 102 malignant melanoma and 83 dysplastic
nevus cases. The 83 non-melanoma images were picked up randomly from the pre-
dominant majority of about 2000 displastic lesions. In our analysis there were no
‘unknown’ or ’don’t care’ labels.

Melanoma incidence rate may fluctuate over countries, but clinical statistics show
an average of about 5% melanoma images as a fraction of all the dermoscopic images
of the pigmented nevi. This means that the melanoma class is under-represented
compared to the benign class. Learning classifiers from such cases would require
special rules to properly treat the imbalanced class i.e. to draw equal attention to
the minority class [56, 57, 58]. In this experiment we took the whole statistics for
the minority class (melanoma, 102 cases) and then randomly selected the 83 non-
melanoma images from the larger pool (about 340) covering the pigmented benign
lesions (dysplastic junctional nevus, displastic compound nevus). In clinical practice
only the above mentioned benign pigment cases are confused with melanoma. The
ground truth was in each case the hist-pat examination.

In this work we do not analyze in detail the impact of data balancing techniques
for the classification of malignant melanoma (see e.g. [58]) but we estimated if such
impact affects our classifiers. Three different under-sampling procedures of the ma-
jority class in the data space were performed to balance the data vectors learned by
the classifier before cross validating the classifier models. No major change in classifi-
cation performance (< 2%) was observed. This allows us to treat the data imbalance
problem in our experiment under control. This of course does not mean that there
is no impact of the data imbalance problem at all but that the bias comes preferably
from the ’clinical’ source and not the data statistics or procedures.

In the analysis there were three sets of images: the original set 2272x1704 (A) and
the two downscaled sets (by averaging neighbor values in 2x2 elements) of 1136x852
(B) and 568x426 (C) pixels respectively.

197

3.2. Features

There were no apparent artefacts on the analyzed dermoscopy images (black borders,
hairs, droplets of immersion fluid, etc.) or there were few negligible distortions so no
preprocessing tasks to the images took place.

To support wavelet transformations the dermoscopy images of all three sets (A, B,
C) were transformed to indexed images with linear, monotonic color maps of double
precision numbers. Each iteration of the wavelet decomposition downscales the input
image by 2 both in rows and columns and three such iterations were done.

Wavelet decomposition of signals is well established in theory after works of Mallat
[59], Daubechies [60] and the others (Gabor, Morlet). It is widely applied especially
to discrete signals in the form of DDWT-Discrete Dyadic Wavelet Transform. This
transform is widely used to analyze the signal structure, signal de-noising and com-
pression capabilities.

Images are two-dimensional signals and the wavelet transform to the images are
done according to the Mallat algorithm [59]. One iteration of this algorithm produces
4 downscaled sub-images which can be considered as LL, LH, HL and HH filters (L-
low-pass, H-high-pass filter) after one-dimensional wavelet transform on the rows and
then on the columns.

DDWT can be applied recursively to the low-frequency sub-band only, but in our
analysis we used the wavelet packets so each of the four filters was subject to further
wavelet decompositions (not only LL).

Altogether in the three iterations 1+4+416=21 different transformation branches
were produced. In one branch the following 12 simple features were calculated: (e;,
i=1,2,3,4) - energies of the sub-images, (¢;/€maz, i=1,2,3,4) - maximum energy ratios
and (e;/Yeg, k # 1,1=1,2,34) - fractional energy ratios, after [18, 19, 20]. Energy was
defined as a sum of absolute values of the pixels. This procedure was repeated for
the three sets A, B, C of different image resolutions yielding 21x12=252 attributes in
each single set.

For reasons presented in the Introduction for the skin texture analysis we took
RBio3.1 wavelet base. Reverse bi-orthogonal wavelets (wavelet pairs) have the prop-
erty of perfect reconstruction i.e. if X-image, A-reconstructed image of approxima-
tions and D-reconstructed image of details, then X=A+D. This property is possible
due to two separate filter sets, one for decomposition and another one for image recon-
struction. This wavelet is symmetric function and is not orthogonal (X2 # A2 + D?).

Search for the best subset of features [61] can be used to i) reduce bias (overtrain-
ing), ii) reduce computational burden and iii) enhance classification performance.
This is usually done because the simplest approach, an exhaustive or random search
to evaluate the best feature set, is infeasible or even computationally prohibitive. In
this work we do not take advantage of any feature selection or extraction algorithms.
This follows the results presented in [62] where widely known feature selection mech-
anisms (CFS, PCA, GSFS) were applied to melanoma classification problem. It was
concluded that although application of feature selection algorithms may reduce the
complexity of the classification, the performance is highly dependent upon the clas-
sifier. Therefore, it was opted to use all the features and preserve them for some
late-selections. It is also the objective of this work - to search for efficient ANN clas-

198

sifiers in terms of their topologies and/or error minimization approaches and not by
the feature selection of the data base.

3.3. Algorithm

Artificial neural network is a black-box approach to the knowledge acquisition and can
model complex relationships between inputs and outputs. As a learning method it is a
"standard’ and well recognized approach [63, 64, 65]. Our objective was to collate this
’simple’ learner with ensemble models discussed in [17] for the same (high-performing)
wavelet families (Bio/RBio). Since both the topology (hidden layers) and the learning
details (the choice for the learning function) can bias the classification performance of
melanoma, we examined and compared different setups. Since neural computations
can be burden on CPU/memory and can be time-consuming, we arbitrarily focused
on one static feedforward back-propagated artificial neural network (ANN) without
any recursive or meta (deep) learning extensions. Parallel processing (both CPU- and
GPU-based) was implemented.

In our study we used a static feedforward back-propagation artificial neural net-
work (ANN) to classify the dermoscopy images based on the calculated 252 wavelet
features. As a preprocessing phase normalization of the the input was done and the
labels were fixed to '1’ (Malanoma) and 0’ (Dysplastic Nevus).

The ANN structure was:

e 252 input nodes that represent the wavelet features,

e a number of hidden nodes grouped into one or two hidden layers (7T opol) subject
to change (Topole {10,20,[10 — 10], [10 — 20], [20 — 20]}),

e 2 output neurons, each one activated on the vectors belonging to one class only
(so in the binary classification in mutually exclusive way).

Two setups were analyzed within the scope of the activation functions:

e NN1: hyperbolic tangent sigmoid transfer function (al) for the hidden layers
and linear activation function (a2) for the output layer [65]. This is a generic
ANN to model any kind of input to output mapping.

e NN2: hyperbolic tangent sigmoid transfer function (al) for the hidden layers
and also hyperbolic tangent sigmoid transfer function (al) for the output layer.
This ANN should perform more efficiently while classifying inputs according to
target classes.

As a performance function (Perf) for NN1 and NN2 we used the ’standard’ mean
square error (mse) and the cross-entropy (ent). The latter case was an attempt
to check how ’information-gain’-based learning objective affect both the classifica-
tion and computational performance. The binary cross-entropy (ent) is calculated as
—p xlog(p) — (1 — p) * log(1 — p) (p-a priori probability of one class) and it heavily
penalizes outputs that are extremely inaccurate, with very little penalty for fairly
correct classifications.

199

For the sake of cross-validation (CV) we randomly divided our data into training
(70/100), validation (15/100) and testing (15/100) set. Every epoch all the training
samples were presented simultaneously to the network to train it. The validation
data was used to evaluate the prediction errors hence to optimize and update the
weights in the backpropagation phase. The testing set was used to calculate all the
performance coefficients. The algorithm was as follows:

1. Separate data into three sets: training, validation, testing
2. Build a network (NNx, Perf, Topol, Learn)

3. Determine the parameters (stoping conditions: maximum number of epochs,
maximum training time; learning conditions: learning rates, etc. Loop (4-6)
(average over initial conditions, #(CV partitions)=6)

4. Initialize the weights and biases randomly (but with same seed to compare
different setups) Loop (5-6) over epochs until stopl

5. Train the network with the train data

6. Compute the network performance on validation data and back propagate the
error to update the weights

7. Use the network (compute the network performance on the test data)

As stopl standard conditions were applied: the maximum number of epochs reached,

maximum time exceeded, performance gradient fallen below e 6.

Several training algorithms and refinements for ANNs have been proposed in the
literature to enhance the convergence speed and reduce the generalization error of
the network [65, 64, 66]. In this work we do not discuss mathematical properties
of those algorithms, rather focus on the classification interest when they are run
with ’standard’ base parameters. The analyzed backpropagation training algorithms
(Learn) were: (shown with initial parameters where applicable)

L1 Levenberg-Marquardt (x = 0.001),

L2 Bayesian Regularization (u = 0.005),

L3 Broyden-Fletcher-Goldfarb-Shanno,

L4 Conjugate Gradient with Powell-Beale restarts,

L5 Fletcher-Powell Conjugate Gradient,

L6 Polak-Ribiére Conjugate Gradient,

L7 Gradient Descent (Irate = 0.01),

L8 Gradient Descent with Adaptive Learning (lrate = 0.01),

L9 Gradient Descent with Momentum (Irate = 0.01, momentum = 0.9),

LA Variable Learning Rate Gradient Descent (Irate = 0.01, momentum = 0.9),

200

LB One Step Secant,
LC Resilient backpropagation (Irate = 0.01, A = 0.07),
LD Scaled Conjugate Gradient.

Although in our ANN learning we meet the CV paradigm and validate during training,
to promote better generalization for the Perf function 'mse’ (mean squared error) we
applied also the performance regularization ratio (0.01) which takes into account not
only minimizing the error but also the weights and biases (for L2 set to 0).

Due to performance aspects the Matlab library was used for calls to the ANN
training algorithms. The code was run on the CUDA-based NVidia GTX 1070 GPU.

In our brief review of the related literature we went through the advances of
both the ANN and mobile devices for the melanoma CAD. Unfortunately, there are
no methodical studies how the ANN structure (hidden layers) affect the melanoma
classification performance. Arbitrary values for both the number of the hidden layers
and the number of neurons in the hidden layers are published. Usually 2- and 3-
hidden layers are presented. Taking into account the computational burden reported
and own attempts on both CPU- and GPU-based parallel computing platforms and,
last but not least, performance analyzes and benchmarks for the ARM-based mobile
devices, we limited ourselves to up to 2 hidden layers with pretty small (up to 20)
neurons on each layer.

4. Results and Discussion

We analyzed two networks: NN1 and NN2 (see Section 3.3.) each tought according
to two performance measures: (mse) and (ent). The best CV performance for the
discrimination of Melanoma from Dysplastic nevi is reached with NN2(mse) which
is full sigmoid-like network. Performance of NN1(mse/ent) and NN2(ent) is slightly
worse (by about 8-3%) and more sparse in terms of (Learn, Topol) coverage. Below
we present the results for the best performing NN2(mse).

Our objective was to find the best performing ANN for the classification of melanoma
dermoscopy images under the assumption that the algorithm for using the (trained)
network and, as a next step, even the network training process take place on an
ARM-based mobile device. For that reason only limited topologies were taken into
account (starting with 10 hidden neuron on one hidden layer up to 20x20 hidden
neurons on two layers). Although we take into account only about 10, 20, 100, 200,
and 400 weights this is not a small selection compared to the literature. Close by
performance our experiments show coarsely how complex in terms of epochs and time
the back-propagation algorithms can perform. Statistics for the 5x13=65 different
setups shows the following grouping of results in terms of pairs (number_ofepochs,
setups_finished): (10,17), (15,31), (20, 38), (30,44), (50,45), (100,51). As a neces-
sary condition for further analysis we took the threshold of 20 epochs (median).

201

In Table 1 we show numerical results of AUC for resolutions A, B and C for the five
setups of the hidden layers and for the thirteen different back-propagation algorithms
assumed that the number of epochs is below 20. Absence of L7-LA proves that
methods based on (variations of) gradient decent converges very slowly (maximum
number of epochs even above 1000) and are out of range of mobile hand-held devices
and are not feasible as CAD applications.

Table 1. Numerical results for AUC for (from top to bottom) resolutions A, B, C as
a function of Topol and Learn. Filter: #Epoch<20

Topol AUC [1077]
L1 [LZ[L3[L4 | L5 | L6 L7 L8[LI LA[LB | LC[LD
10 92 194192 | 94|94 |9 | - - - - 95 - 93
20 94 6 | 9419 | - |93 | - - - - - - 97
10-10 | 97 6 | 93196 |96 | 96 | - - - - 97 - -
10-20 | 95 | 93 | 95| 93 | 92 | 94 | - - - - 95 | 92 | 92
20-20 | 96 | 61 | 92 | 94 | 91 | 95 | - - - - - 89 | 96
10 99 | 8 | 97 | 98 | 96 | 98 | - - - - 98 | 98 -
20 100 | 72 | 98 | 98 | 98 | 98 | - - - - 97 | 99 | 97
10-10 | 98 | 86 | 98 | 99 | 97 | 98 | - - - - - 92 -
10-20 | 97 | 86 | 99 | 98 | 96 | 99 | - - - - 99 | 97 -
20-20 | 95 | 14 |99 | 98 | 98 | 97 | - - - - 99 - -
10 95 - 195949493 | - - - - 94 | 92 | 92
20 98 - 1931929293 - - - - 93 | 93 | 94
10-10 | 92 |1 92 | 91 | 91 | 93 | 93 | - - - - 92 | 89 -
10-20 | 94 | 93 | 91|90 | 91 | 92 | - - - - 92 | 94 | 94
20-20 | 94 719219219393 | - - - - 93 | 93 -

AUC is a good overall measure for how a classifier performs. When the classifier is
used however one should pick up the threshold thereby the tradeoff between the sensi-
tivity and specificity. This is called the ROC operating point and its 'manual’ optimal
selection does depend on the subject of interest. In this study we determined the opti-
mal operating point from probabilistic considerations [67] by the following geometrical

. . . _ N (p(P|N)—p(N|N)) N ;
procedure. A straight line calculated with slope=% W crossing the point

ROC(0,1) we shifted down and to the right, until it intersected the ROC curve. P
and N are the total instance counts in the positive (melanoma) and negative (dys-
platic) class and expressions for p denote different probabilities for misclassifications,
e.g. p(N|P) denotes the probability of misclassifying a positive class as a negative
class etc. In Figure 1 we present those optimal points from trainings with different
Learn and T opol setups.

First we remark that the above numerical procedure fail for few points (middle
field and right upper corner). All the other points are optimal operating points.
The strings of 'Lx’ stand for the best-performing back-propagation algorithms and
the colors represent the structure of the hidden layers. There are no single winners
and we should mind that all the points come from the best-converging networks. It

202

Optimal operating point of the ROC curve (#Epoch<20)
10r 0 0 568x426 %]
b .]
09k L1L3L5
. . n
085} ~_ Lt i)
08t \L3L3 L4L4L5L5L6L6LBLC

0.75F m L3L4‘L4L5L5LGL6‘LB LBLBL(;LCLD LD
+ + + +

L3112 I I I I I I
') I I I I I |
=Yl Lelc 1136x852 Topology 57
= - L% L1L1L1L3L3L6LBLC 10
S 09f
‘@ ® L3L4L5LBLB " .
Doss5t L2L212 10-10
Q0.8 3L4L4L41515L5L5L6L6L6LBLC 10-20
Norst
Py ! ! ! ! | ! 1120-20 ! |
10T L1L2L4L5L5LBLC | o, 2272x1704 "4
0.95 - \. . ‘|
0ok L6 L3
. . . .
0.85 [L1L3L3L4LBLDLD L1LCLD L2

0.8 ™ 113131415161 6L6LBLD
0.75 ®L4L4L5L6 |

0 0.1 0.2 03 0.4 05 0.6 07 0.8 0.9 1
1-Specificity

Figure 1. Optimal points (not components of one ROC) from trainings with different
Learn and T opol setups. Resolutions A, B, C are presented.

seems that different combinations of learning algorithms and topologies reach upper-
left ROC region. Taking into account possible system limitations of the developed
applications (e.g. image resolution limits, the number of the weights, memory limits
of the training cycle) one can optimally select a pair (Learn,T opol).

L1 (Levenberg-Marquardt) shows extreme robustness for almost all topologies for
resolutions A, B and C.

L6 (Polak-Ribiére Conjugate Gradient) seems to be the second best for A,B,C -
it is less represented but reaches high AUC values in the upper-left corner.

Fig.1 shows that the magnitude of the the operating points is preserved and stable
for B and C and, unexpectedly, outperforms the initial A conditions. An extra attempt
was done to degrade the resolution C by a factor of two, but it failed (performance
decrease by 30%). A stable overall performance for A, B and C proves resolution
invariance of the wavelet features for the original clinical data and the two descendant
downgraded image resolutions. This behavior confirms results from [17] where the
ensemble learning paradigm was implemented. In our setup a single ’standard’ learner
(ANN) performs in the same way. It seems that this performance is even better than
in [17] where the downgraded resolutions showed still high but slightly worse results.
In our experiments with ANN, which is a homogeneous (not complex) model, better
sensitivity and specificity is reached for dermoscopy images with smaller resolutions.
The maximum reached at B shows the best production resolution of 1136x852 pixels.

Whether this behavior is due to the wavelet features and not the (selected) learning
methods it should be further studied both in some future experiments with other
learning paradigms and by theoretical considerations about the wavelet families and
their properties.

203

References

Korotkov, K., Garcia, R., Computerized analysis of pigmented skin lesions: A
review. Artificial Intelligence in Medicine, 2012, 56(2).

Masood, A., Ali Al-Jumaily, A., Computer aided diagnostic support system for
skin cancer: A review of techniques and algorithms. International Journal of
Biomedical Imaging, 2013, 2013(7), pp. 323268.

Oliveira, R.B., Papa, J.P., Pereira, A.S., Tavares, J.M.R., Computational meth-
ods for pigmented skin lesion classification in images: Review and future trends.
Neural Computing and Applications, 2016.

Skvara, H., Teban, L., Fiebiger, M., Binder, M., Kittler, H., Limitations of
dermoscopy in the recognition of melanoma. Arch. Dermatol., 2005, 141, pp.
155-160.

Stolz, W., Semmelmayer, U., Johow, K., Burgdorf, W.H., Principles of der-
matoscopy of pigmented skin lesions. Seminars in Cutaneous Medicine and
Surgery, 2003, 22(1), pp. 9-20.

Wang, S.Q., Hashemi, P., Noninvasive imaging technologies in the diagnosis of
melanoma. Seminars in Cutaneous Medicine and Surgery, 2010, 29(3), pp. 174—
184.

Talbot, H., Bischof, L., An overview of the polartechnics solarscan melanoma
diagnosis algorithms, 2003, pp. 33-38.

Boone, M., Suppa, M., Dhaenens, F., Miyamoto, M., Marneffe, A., Jemec,
G., Del Marmol, V., Nebosis, R., In vivo assessment of optical properties of
melanocytic skin lesions and differentiation of melanoma from non-malignant
lesions by high-definition optical coherence tomography. Arch. Dermatol. Res.,
2016, 308(1), pp. 7-20.

Johr, R.H., Dermatoscopy: Alternative melanocytic algorithms - the abcd Tule of
dermatoscopy, menzies scoring method, and 7-point checklist. Clinics in Derma-
tology, 2002, 20, pp. 240-247.

Kittler, H., Pehamberger, H., Wolff, K., Binder, M., Follow-up of melanocytic
skin lesions with digital epiluminescence microscopy: Patterns of modifications
observed in early melanoma, atypical nevi, and common nevi. J. Am. Acad.
Dermatol., 2000, 43(3), pp. 467-476.

Goodson, A.G., Grossman, D., Strategies for early melanoma detection: Ap-
proaches to the patient with nevi. J. Am. Acad. Dermatol., 2009, 60(5), pp.
719-735.

Chang, T., Kuo, C.C., Texture analysis and classification with tree-structured
wavelet transform. IEEE Transactions on Image Processing, 1993, 2(4), pp. 429
44.

204

[13]

[14]

[15]

[16]

[25]

[26]

Walvick, R.P.; Patel, K., Patwardhan, S.V., Dhawan, A.P., Classification of
melanoma using wavelet-transform-based optimal feature set. In: Medical Imag-
ing 2004, International Society for Optics and Photonics, 2004, pp. 944-951.

Ma, L., Staunton, R.C., Analysis of the contour structural irreqularity of skin
lesions using wavelet decomposition. Pattern Recognition, 2013, 46(1), pp. 98-
106.

Massone, C., Hofmann-Wellenhof, R., Ahlgrimm-Siess, V., Gabler, G., Ebner,
C., Soyer, H.P., Melanoma screening with cellular phones. PLoS ONE, 2007,
2(5), pp. e483.

MacKinnon, N., Vasefi, F., Booth, N., Farkas, D.L., Melanoma detection using
smartphone and multimode hyperspectral imaging. SPIE BiOS, 2016, 9711, pp.
971117-1.

Surowka, G., Ogorzatek, M., On optimal wavelet bases for classification of
melanoma images through ensemble learning. Artificial Intelligence and Soft
Computing, Lecture Notes in Computer Science,, 2016.

Patwardhan, S.V., Dhawan, A.P., Relue, P.A., Classification of melanoma us-
ing tree structured wavelet transforms. Computer Methods and Programs in
Biomedicine, 2003, 72, pp. 223—-239.

Patwardhan, S.V., Dai, S., Dhawan, A.P., Multi-spectral image analysis and clas-
sification of melanoma using fuzzy membership based partitions. Computerized
Medical Imaging and Graphics, 2005, 29, pp. 287-296.

Suréwka, G., Merkwirth, C., Zabiniska-Plazak, E., Graca, A., Wavelet based clas-
sification of skin lesion images. Bio Alg. Med Syst., 2006, 2(4).

Suréwka, G., Grzesiak-Kopec, K., Different learning paradigms for the classifi-
cation of melanoid skin lesions using wavelets. Proc. EMBCO7 Lyon, 2007.

Surowka, G., Supervised learning of melanocytic skin lesion images. Proc. HSI
Krakéw, 2008.

Indira, D., Jyotsna Suprya, P., Detection € analysis of skin cancer using wavelet
techniques. International Journal of Computer Science and Information Tech-
nologies, 2011, 2(5), pp. 1927-1932.

Fassihi, N., Shanbehzadeh, J., Sarrafzadeh, H., Ghasemi, E., Melanoma diagno-
sis by the use of wavelet analysis based on morphological operators. Proc. Int.
Multiconf. Eng. Comp. Sci. I Hong-Kong, 2011.

Castillejos, H., Ponomaryov, V., Nino-de Rivera, L., Golikov, V., Wavelet trans-
form fuzzy algorithms for dermoscopic image segmentation. Computational and
Mathematical Methods in Medicine, 2012, 578721.

Ramteke, N.S., Jain, S.V., Analysis of skin cancer using fuzzy and wavelet tech-
nique - review & proposed new algorithm. International Journal of Engineering
Trends and Technology, 2013, 4(6).

[27]

28]

[29]

[30]

[31]

205

Sugin, S., Jegadeesh, A., Segmentation of skin images using fized grid wavelet
networks. International Journal of Engineering Research & Technology, 2014,
3(4).

Rajarathinam, A., Arivazhagan, A., Timely efficient automated system by seg-
mentation using wavelet transform. International Journal of Science, Engineering
and Technology Research, 2015, 4(8).

Sikorski, J., Identification of malignant melanoma by wavelet analysis. Proceed-
ings of Student/Faculty Research Day, CSIS, Pace University, 2004.

Aswin, R., Jaleel, J.A., Salim, S., Implementation of ann classifier using matlab
for skin cancer detection. ICMiC13, 2013, pp. 87-94.

Mahmoud, M.K.A., Al-Jumaily, A., Takruri, M., The automatic identification
od melanoma by wavelet and curvelet analysis: Study based on neural network
classification. 11th International Conference on Hybrid Intelligent Systems, 2011,
pp. 680-685.

Clawson, K.M., Morrow, P., Scotney, B., McKenna, J., Dolan, O., Analysis of
pigmented skin lesion border irreqularity using the harmonic wavelet transform.
Machine Vision and Image Processing Conf., 2009.

Ercal, F., Chawla, A., Stoecker, W.V., Lee, H.C., Moss, R.H., Neural network
diagnosis of malignant melanoma from color images. IEEE Trans. Biomed. Eng.,
1994, 41(9).

Dreiseitl, S., Ohno-Machado, L., Kittler, H., Vinterbo, S., Billhardt, H., Binder,
M., A comparison of machine learning methods for the diagnosis of pigmented
skin lesions. Journal of Biomedical Informatics, 2001, 34, pp. 28-36.

Rubegni, P., Burroni, M., Perotti, R., Fimiani, M., Andreassi, L., Cevenini,
G., Dell’Eva, G., Barbini, P., Digital dermoscopy analysis and artificial neural
network for the differentiation of clinically atypical pigmented skin lesions: A
retrospective study. J. Invest. Dermatol., 2002, 119, pp. 471-474.

Hoffmann, K., Gambichler, T., Rick, A., Kreutz, M., Anschuetz, M., Griinendick,
T., Orlikov, A., Gehlen, S., Perotti, R., Andreassi, L., et al., Diagnostic and
neural analysis of skin cancer (danaos). a multicentre study for collection and
computer-aided analysis of data from pigmented skin lesions using digital der-
moscopy. British Journal of Dermatology, 2003, 149, pp. 801-809.

Rajab, M., Woolfson, M., Morgan, S., Application of region-based segmentation
and neural network edge detection to skin lesions. Computerized Medical Imaging
and Graphics, 2004, 28, pp. 61-68.

Maglogiannis, 1., Pavlopoulos, S., Koutsouris, D., An integrated computer sup-
ported acquisition, handling, and characterization system for pigmented skin le-
sions in dermatological images. IEEE Trans. Inf. Techn. Biomed., 2005, 9(1).

206

39]

[40]

[49]

[50]

[51]

[52]

Zagrouba, E., Barhoumi, W., An accelerated system for melanoma diagnosis
based on subset feature selection. Journal of Computing and Information Tech-
nology, 2005, 13(1), pp. 69-82.

Iyatomi, H., Oka, H., Celebi, M.E., Hashimoto, M., Hagiwara, M., Tanaka,
M., Ogawa, K., An improved internet-based melanoma screening system with
dermatologist-like tumor area extraction algorithm. Computerized Medical Imag-
ing and Graphics, 2008, 32(7), pp. 566-579.

Schaefer, G., Rajab, M.I., Celebi, M.E., Iyatomi, H., Skin lesion segmentation
using cooperative neural network edge detection and colour normalization. Inf.
Techn. and Applic. Biomed., 2009.

Lau, H.T., Al-Jumaily, A., Automatically early detection of skin cancer: Study
based on neural network classification. IEEE International Conference of Soft
Computing and Pattern Recognition, 2009, pp. 375-380.

Vennila, G.S., Suresh, L.P., Shunmuganathan, K., Dermoscopic image segmen-
tation and classification using machine learning algorithms. American Journal
of Applied Sciences, 2012, 8(11).

Mhaske, H., Phalke, D., Melanoma skin cancer detection and classification based
on supervised and unsupervised learning. International conference on Circuits
Controls and Communications, 2013, pp. 1-5.

Jaleel, J.A., Salim, S., Aswin, R., Computer aided detection of skin cancer. In-
ternational Conference on Circuits, Power and Computing Technologies, 2013.

Elgamal, M., Automatic skin cancer images classification. International Journal
of Advanced Computer Science and Applications, 2013, 4(3).

Silva, C.S., Marcal, A.R., Colour-based dermoscopy classification of cutaneous
lesions: An alternative approach. DOI: 10.1080/21681163.2013.803683, 2013.

Achakanalli, S., Sadashivappa, G., Skin cancer detection and diagnosis using
image processing and implementation using neural networks and abed parameters,
2014.

Alasadi, A.H., ALsafy, B.M., Early detection and classification of melanoma skin
cancer. Int. J. Information Technology and Computer Science, 2015, 12, pp. 67—
74.

Torre, E.L., Caputo, B., Tommasi, T., Learning methods for melanoma recogni-
tion. International Journal of Imaging Systems and Technology, 2010, 20(4), pp.
316-322.

Ruiz, D., Berenguer, V., Soriano, A., S4Nchez, B., A decision support system
for the diagnosis of melanoma: A comparative approach. Expert Systems with
Applications, 2011, 38, pp. 15217-15223.

Maglogiannis, I., Kosmopoulos, D.I., Computational vision systems for the de-
tection of malignant melanoma. Oncology Reports, 2006, 15(Spec no. 4), pp.
1027-32.

[53]

[58]

[59]

[60]
[61]

[62]

207

Rajpara, S., Botello, A., Townend, J., Ormerod, A., Systematic review of
dermoscopy and digital dermoscopy/artificial intelligence for the diagnosis of
melanoma. British Journal of Dermatology, 2009, 161(3), pp. 591-604.

Sathiya, S.B., Kumar, S., Prabin, A., A survey on recent computer-aided diag-
nosis of melanoma. International Conference on Control Instrumentation Com-
munication and Computational Technologies, 2014, pp. 1387-1392.

Abedini, M., Chen, Q., Codella, N.C., Garnavi, R., Sun, X., Accurate and scalable
system for automatic detection of malignant melanoma. In book: Dermoscopy
Image Analysis, 2015, pp. 293-343.

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research,
2002, 16, pp. 321357.

Stefanowski, J., Wilk, S., Selective pre-processing of imbalanced data for improv-
ing classification performance. Data Warehousing and Knowledge Discovery,
2008, pp. 283-292.

Rastgoo, M., Lemaitre, G., Massich, J., Morel, O., Marzani, F., Garcia, R., Meri-
audeau, F., Tackling the problem of data imbalancing for melanoma classification.
BIOSTEC - 3rd International Conference on BIOIMAGING, 2016.

Mallat, S.G., A theory for multiresolution signal decomposition: The wavelet
representation. IEEE Transactions on pattern analysis and machine intelligence,
1989, 11(7).

Daubechies, 1., Ten lectures on wavelets. CBMS STAM, 1994, 61.

Tang, J., Alelyani, S., Liu, H., Feature selection for classification: A review. CRC
Press, 2014, 37.

Maglogiannis, 1., Doukas, C.N., Querview of advanced computer vision systems
for skin lesions characterization. IEEE Trans. Inf. Techn. Biomed., 2009, 13(5),
pp. 721-733.

Michie, D., Spiegelhalter, D.J., Taylor, C.C., Machine Learning, Neural and
Statistical Classification. Prentice Hall, 1994.

Haykin, S., Neural Networks: A Comprehensive Foundation. 2 edn. Prentice
Hall, 2004 ISBN 0-13-273350-1.

Demuth, H.B., Beale, M.H., De Jess, O., Hagan, M.T., Neural Network Design.
2 edn., 2004 ISBN-10: 0-9717321-1-6, ISBN-13: 978-0-9717321-1-7.

Battiti, R., First- and second-order methods for learning: Between steepest de-
scent and newton’s method. Neural Computation, 1992, 4(2).

Hajian-Tilaki, K., Receiver operating characteristic (roc) curve analysis for med-
ical diagnostic test evaluation. Caspian J. Intern. Med., 2013, 4(2), pp. 627-635.

