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THE NEURAL NETWORK ZOO

Figure from asimovinstitute.org/neural-network-zoo/.
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MODEL COMPRESSION (AKA KNOWLEDGE

DISTILLATION)

I Idea: take predictions from a big, complex, accurate
classifier (a teacher) and train a simpler model (a student)
using them instead of training labels.

I That is, optimise

L = −
∑

j

∑
c

p(c|xj) log q(c|xj),

where p(c|xj) is teacher’s posterior probability of class c
given xj and q(c|xj) is the same for the student.
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I Alternatively,

L = λ

−∑
j

∑
c

p(c|xj) log q(c|xj)

+(1−λ)

−∑
j

log q(yj|xj)

 ,
where p(c|xj) is teacher’s posterior probability of class c
given xj and q(c|xj) is the same for the student.
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Figure from Ba and Caruana (2014).
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CIFAR-10 DATA SET

I Labelled subset of the Tiny 80M images data set.
I 60k 32x32 RGB images.
I 10 classes: airplane, automobile, bird, cat, deer, dog, frog,

horse, sheep, truck.
I Each class contains 6k images.
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CNNS VS LSTMS FOR SPEECH

Figure from deeplearning.net

Figure from Graves et al.
(2013)
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ENSEMBLING

p(y|xi) = γpLSTM(y|xi) + (1− γ)pCNN(y|xi)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
γ

32.5

33.0

33.5

34.0

34.5

35.0

35.5

fr
a
m

e
 e

rr
o
r 

ra
te

 [
%

]

CNN + CNN

LSTM + CNN

LSTM + LSTM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
γ

13.2

13.4

13.6

13.8

14.0

14.2

14.4

14.6

14.8

w
o
rd

 e
rr

o
r 

ra
te

CNN + CNN

LSTM + CNN

LSTM + LSTM

Big issue: LSTM is 6 times slower than the CNN. We need to
have two models in one CNN.



ENSEMBLING

p(y|xi) = γpLSTM(y|xi) + (1− γ)pCNN(y|xi)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
γ

32.5

33.0

33.5

34.0

34.5

35.0

35.5

fr
a
m

e
 e

rr
o
r 

ra
te

 [
%

]

CNN + CNN

LSTM + CNN

LSTM + LSTM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
γ

13.2

13.4

13.6

13.8

14.0

14.2

14.4

14.6

14.8

w
o
rd

 e
rr

o
r 

ra
te

CNN + CNN

LSTM + CNN

LSTM + LSTM

Big issue: LSTM is 6 times slower than the CNN. We need to
have two models in one CNN.



ENSEMBLING

p(y|xi) = γpLSTM(y|xi) + (1− γ)pCNN(y|xi)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
γ

32.5

33.0

33.5

34.0

34.5

35.0

35.5

fr
a
m

e
 e

rr
o
r 

ra
te

 [
%

]

CNN + CNN

LSTM + CNN

LSTM + LSTM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
γ

13.2

13.4

13.6

13.8

14.0

14.2

14.4

14.6

14.8

w
o
rd

 e
rr

o
r 

ra
te

CNN + CNN

LSTM + CNN

LSTM + LSTM

Big issue: LSTM is 6 times slower than the CNN. We need to
have two models in one CNN.



HOW TO DO COMPRESSION WITH SWITCHBOARD

I Very large data set, 309 hours of speech, 18 GB.

I 31×41 inputs, 9000 output classes. → Predictions would
take 3.6 TB.



HOW TO DO COMPRESSION WITH SWITCHBOARD

I Very large data set, 309 hours of speech, 18 GB.
I 31×41 inputs, 9000 output classes.

→ Predictions would
take 3.6 TB.



HOW TO DO COMPRESSION WITH SWITCHBOARD

I Very large data set, 309 hours of speech, 18 GB.
I 31×41 inputs, 9000 output classes. → Predictions would

take 3.6 TB.



HOW TO DO COMPRESSION WITH SWITCHBOARD
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∑
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BLENDING LSTMS INTO CNNS

L(λ) = λ

−∑
j

∑
c

p(c|xj) log q(c|xj)

+(1−λ)

−∑
j

log q(yj|xj)
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RESULTS

FER WER model size execution time
Sainath et al.-style CNN 37.93% 15.5 ≈ 75M × 0.75
vision-style CNN 35.51% 14.1 ≈ 75M × 1.0
LSTM 34.15% 14.4 ≈ 65M × 5.8
LSTM→ CNN blending 34.11% 13.83 ≈ 75M × 1.0
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I Recurrent networks for speech recognition may not need

to be recurrent.
I Only “dim knowledge” necessary.
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